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Abstract

Wepresent an extension of the cut-pursuit algorithm, introduced by Landrieu andObozinski
(2017), to the graph total-variation regularization of functions with a separable nondi�er-
entiable part. We propose a modi�ed algorithmic scheme as well as adapted proofs of
convergence. We also present a heuristic approach for handling the cases in which the values
associated to each vertex of the graph are multidimensional. ¿e performance of our algo-
rithm, which we demonstrate on di�cult, ill-conditioned large-scale inverse and learning
problems, is such that it may in practice extend the scope of application of the total-variation
regularization.

Keywords: total variation; nonsmooth optimization; graph cut; brain source identi�cation;
graph learning.

1 Introduction

Landrieu and Obozinski (2017) recently presented a working-set strategy for minimizing di�er-
entiable functions regularized by a total-variation seminorm structured on a weighted graph. We
propose a modi�ed scheme extending the scope of the algorithm to functions with a nondi�eren-
tiable part which is separable along the vertices of the graph. Given a �nite graph G def= (V , E ,w)
with edge weights w ∈ RE

+, the problem is to

minimize F∶ x ↦ f (x) + ∑
v∈V

дv(xv) + ∑
(u,v)∈E

w(u,v)∣xu − xv ∣ , (P1)

where f ∶RV → R is di�erentiable, and for all v ∈ V , дv ∶R→ ]−∞,+∞]. Our framework allows
us tomake only weak assumptions on the regularity of the functions дv . In order to handle in�nite
values and nondi�erentiability, we suppose that for all v ∈ V , дv is directionally di�erentiable; this
is detailed later in de�nition 2.1, using the notions of domain and directional derivative.

Our algorithm allows us to �nd stationary points of F, that is to say points at which all
directional derivatives of F are nonnegative. It can be noted already that if all the considered
functionals are convex, then the above hypothesis holds, and a stationary point is equivalent to a
global minimum.

Our extension of the cut-pursuit algorithm is motivated by the presence of nondi�erentiable
terms besides the graph total variation in a wide variety of applications. In signal processing for
example, the nondi�erentiable ℓ1 norm �delity is used for outlier removal, or the denoising of
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images corrupted by a multiplicative noise, as presented in the works of Nikolova (2004) and
Durand et al. (2010), respectively. Wu et al. (2015) make also use of such �delity terms for the 3D
mesh denoising problem, in which noises of multiple natures and scales may coexist.

Alternatively, additional separable nondi�erentiable regularization terms can also be consid-
ered. On some problems, it is relevant to constrain the values associated to each vertex within a
convex subset of the reals, yielding box constraints. Another popular regularization is the fused
LASSO, introduced initially by Tibshirani et al. (2005), where a LASSO-like penalty complements
the total-variation regularizer for enforcing solutions which are both sparse and piecewise con-
stant. Gramfort et al. (2013) propose applications in functional magnetic resonance imaging,
Becker et al. (2014) in electroencephalography, Omranian et al. (2016) in genetics, and Takayama
and Iwasaki (2016) in remote sensing.

In addition, we also consider extending the cut-pursuit algorithm to the cases where the
values taken by the vertices belong to a multidimensional space rather than being scalar. ¿is
extension is motivated by the success of convex relaxations of the combinatorial Potts model to
solve labeling problems, as reported by Nieuwenhuis et al. (2013).

1.1 RelatedWorks

Large-scale problems regularizedwith the graph total variation are typically solved using proximal
splitting algorithms; see the general reviewofCombettes andPesquet (2008), and themore speci�c
approaches of Couprie et al. (2013) or Raguet and Landrieu (2015). ¿ey are however �rst-order
methods, for which convergence is known to be slow, even though preconditioning strategies
can help as argued by Pock and Chambolle (2011) and Raguet and Landrieu (2015).

¿e connection between graph cuts and total variation has been successfully exploited by
Chambolle and Darbon (2009) to reformulate the graph total-variation regularization as a
parametric maximum �ow problem when f is a square ℓ2 norm. Xin et al. (2016) extend this to
the fused LASSO regularization already mentioned, by composing the above method with the
proximity operator of the ℓ1 norm. ¿ey still have to resort to proximal splitting for dealing with
more general functionals.

In another line of thought, Bach et al. (2012) have shown that the sparsity of the solution
should be exploited computationally to solve large-scale optimization problems faster.Working-
set algorithms have shown promising results for the convex setting, as demonstrated by Harchaoui
et al. (2015).

¿ese ideas are at the heart of the cut-pursuit algorithm originally proposed by Landrieu and
Obozinski (2017), which we detail in the following; we refer to their article for a more in-depth
discussion on its connection with other works.

1.2 Cut-Pursuit for Di�erentiable Functions

¿e algorithmic structure of cut-pursuit is summarized in algorithm 1 below. We expose the
general principles behind it, recalling for now the situation where there is no nondi�erentiable
functional besides the graph total variation, reducing to problem P1 where for all v ∈ V , дv def= 0.

Since the total-variation penalty has a spatially regularizing e�ect, solutions are expected
to be coarse, that is to say they can be expressed as a vector which is piecewise constant with
respect to a partitionV of V into few connected components. A key concept of the cut-pursuit
algorithm is the reduced problem, which is problem P1 constrained on the space of piecewise
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constant vectors with respect toV; this can be formulated as

minimize F(V)∶ R
V Ð→ R ,
ξ z→ F(∑U∈V ξU 1U) ,

(P2)

where for all subset U ⊆ V , 1U ∈ RV denotes the vector such that for all v ∈ V , (1U)v def= 1 if v ∈ U ,
0 otherwise. By factorizing �nite di�erences, the graph total-variation term in F(V) becomes
∑(U ,U ′)∈E ω(U ,U ′)∣ξU − ξU ′ ∣, where we note the set of adjacent components

E def= {(U ,U ′) ∈ V2 ∣ (U ×U ′) ∩ E ≠ 0} ,

and for all (U ,U ′) ∈ E, the edge weight ω(U ,U ′)
def= ∑(u,v)∈(U×U ′)∩E w(u,v). Since the term ξ ↦

f (∑U∈V ξU 1U) is still di�erentiable, the reduced problem P2 is structured just as the original
problem P1, but over the reduced graph G def= (V, E,ω), whose vertices are the components inV.
Consequently, it should be much easier to solve.

Algorithm 1: Principle of cut-pursuit; D ⊂ RV is a set of directions adapted to the problem.
Initialize:V ← {V};
repeat

�nd ξ(V) ∈ RV , stationary point of F(V)∶ ξ ↦ F(∑U∈V ξU 1U);
x ← ∑U∈V ξ(V)U 1U ;

�nd d(x) ∈ D, minimizing d ↦ F′(x , d);
V ← ⋃U∈V {maximal constant connected components of (d(x)u )u∈U};

until F′(x , d(x)) ≥ 0;
return x.

¿e cut-pursuit algorithm iteratively re�nes the partition V, initialized at {V}. At each
iteration, the reduced problem corresponding to the current partitionV is solved, and its solution
is used in turn to re�ne the components ofV.

¿e rationale of the re�nement step stems from the structure of the directional derivative
F′(x , d) of F at point x ∈ RV in direction d ∈ RV . Some calculus shows that F′(x , d) can be
expressed as

F′(x , d) = ∑
v∈V

δv(x)dv + ∑
(u,v)∈E(x)=

w(u,v)∣du − dv ∣ , (1)

where
δv(x) def= ∇v f (x) + ∑

(e ,u)∈E×V
e=(u,v) or (v ,u)

we sign(xv − xu) ,

sign∶R↦ {−1, 0,+1}∶ t ↦ −1 if t < 0, 0 if t = 0 and +1 if t > 0, and E(x)=

def= {(u, v) ∈ E ∣ xu = xv}
is the set of edges whose vertices share the same value. ¿e �rst sum in equation 1 consists in
unary terms, in which the sign of δv(x) determines whether the value of each vertex should
tend to decrease or increase. ¿e second sum consists in binary terms, encouraging the values at
neighboring vertices to evolve in unison.

¿e re�nement step does not require �nding a “steepest descent” direction, butmerely re�ning
the current partition into a new one, thus adding relevant degrees of liberty to the next reduced
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problem. ¿e goal is to split the current components into groups of vertices tending to increase
together or decrease together, while taking coupling terms into account. Such a split can thus be
encoded as a direction in the set {−1,+1}V . We thus look for a steepest binary direction

�nd d(x) ∈ argmin
d∈{−1,+1}V

F′(x , d) , (P3)

which can be solved by �nding the minimum cut in an appropriate �ow graph. ¿e re�ned
partitionV is then de�ned by splitting each component U of the current partition according to
the constant connected components of (d(x)u )u∈U .

Beyond the computational e�ciency of the cut-pursuit algorithm, the main result of Landrieu
and Obozinski (2017) is the optimality certi�cate, which states that if x is a solution of a reduced
problemP2, and that the steepest binary direction problemP3 induces no re�nement of the current
partition then x is a solution of the main problem P1. In consequence, the algorithm converges
in a �nite number of steps to such a solution. In practice, since the number of components ofV
increases rapidly and the �nal partition is expected to be coarse, only a few iterations are needed.

1.3 Contributions

If we assume now that F has a nondi�erentiable part other than the graph total variation, the
analysis above does not stand because one cannot decompose the directional derivative into
unary and binary contributions as in equation 1.

Assuming that such a nondi�erentiable part is separable along vertices, a similar decompo-
sition can be achieved, but the unary terms δv would depend on the sign of dv . In contrast to
what happens with the di�erentiable term, where each vertex either tends to increase or decrease,
it is now possible that both directions +1 and −1 are unfavorable for some vertices. ¿us, if one
wants to keep the principle of the cut-pursuit algorithm for the regularization of nondi�erentiable
functions, it seems necessary to search for descent directions within the set {−1, 0,+1}V when
re�ning the partition.

In this paper, we provide a simple theoretical framework allowing to deal with directional
derivatives in possibly noncontinuous settings.¿en,we show that re�ning partitions with descent
directions within {−1, 0,+1}V is actually su�cient in order to retain the optimality certi�cate
of cut-pursuit with separable nondi�erentiable terms. Since the resulting problem can also be
solved via a minimum cut in an adapted �ow graph, this �nally enables the use of the powerful
cut-pursuit approach on a large class of problems as introduced above.

Considering a problem in which each vertex takes multidimensional values, unit vectors
encoding a descent direction at a vertex are not restricted to the �nite {−1,+1} set. ¿ere is
actually an in�nity of such unit vectors, and searching for a steepest unit descent direction is
intractable. However, we propose some heuristics, and show numerically that by restricting
the search to a small set of well-chosen directions, one can still apply the cut-pursuit approach,
drastically outperforming traditional proximal schemes.

2 Extending Cut-Pursuit

Since the cut-pursuit relies on directional derivatives, we start with some de�nitions allowing us
to manipulate them with the necessary degree of generality.



2. Extending Cut-Pursuit 5

De�nition 2.1. LetΩ be a real vector space, and h∶Ω → ]−∞,+∞]. ¿e domain of h is dom h def=
{x ∈ Ω ∣ h(x) < +∞}. Given x ∈ dom h and d ∈ Ω, we say that h admits a directional derivative
at point x in direction d if the quantity h′(x , d) def= limt↓0

h(x+td)−h(x)
t exists in ]−∞,+∞]. Finally,

we say that h is directionally di�erentiable if it admits a directional derivative at every point of its
domain and in every direction.

Ourde�nition of directional derivativeswould be standard, if itwere not for in�nite values. It is
easy to establish that sums of directionally di�erentiable functions are directionally di�erentiable,
and that the directional derivative of the sum is the sum of the directional derivatives.

Interestingly, in dimension one, that is Ω set= R, one can easily show that directional di�er-
entiability implies lower semicontinuity over the domain. ¿e reciprocal does not hold; consider
h∶ x ↦ x sin(1/x) and h(0) def= 0, which is continuous at 0 but not directionally di�erentiable at
this point. Note also that this does not hold in larger dimensions, as shown by the counterex-
ample h∶R2 → R∶ (x , y) ↦ −x2y/(x4 + y2) and h(0, 0) def= 0. Indeed, for all (d , e) ∈ R2 and
t ∈ R, h(t(d , e)) = −td2e/(t2d4 + e2), and thus h′((0, 0), (d , e)) = 0. However, for all x ∈ R,
h(x , x2) = −1/2 < 0, hence h is not lower semicontinuous at 0.

Finally, a special case of interest is convexity, automatically ensuring directional di�erentia-
bility. In the usual case with only �nite values, this is typically shown by Hiriart-Urruty and
Lemaréchal (2004, Part D), recalling that directional derivative of h at point x in direction d is
nothing but the right derivative at 0 of the unidimensional functional ℓ∶ t ↦ h(x + td), which is
also convex, admitting thus the right derivative in question. If now h admits positively in�nite
values but x belongs to its domain, either ℓ(t) = +∞ for all t > 0, in which case h′(x , d) = +∞,
or ℓ(t) < +∞ for some t > 0, in which case ℓ is �nite over [0, t] by convexity, reducing to the
above case with only �nite values.

Convexity is of particular importance because many applications would use convex opti-
mization algorithms for solving the reduced problem P2. However, we underline that it is not a
requirement, and that the cut-pursuit algorithm can be perfectly applied on nonconvex problems,
provided that solutions of the reduced problems can be found.

In the remainder of this section, we �rst describe our method for extending the cut-pursuit
algorithm, and the rationale behind it. We then further justify this rationale by providing a
convergence proof. Subsequently, we specify some practical implementation details. Finally, we
give an e�cient heuristic for dealing with a similar setting where the values at each vertex are
multidimensional.

2.1 Steepest Ternary Direction

As stated in § 1.3, nondi�erentiable terms in F prevent convenient decomposition of the directional
derivatives as in equation 1. However, an important property of the directional derivative is that
it is positively homogeneous.

Proposition 2.1. Let Ω be a real vector space, and h∶Ω → ]−∞,+∞]. If h admits a directional
derivative at x ∈ dom h and direction d ∈ Ω, then for all λ ≥ 0, it also admits a directional
derivative at x in direction λd, and h′(x , λd) = λh′(x , d).

Proof. If λ = 0, then directly h′(x , λd) = 0; suppose then that λ > 0. For all t > 0, write

h(x + t(λd)) − h(x)
t

= λ h(x + (tλ)d) − h(x)
tλ

,
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which holds even if h(x + tλd) is in�nite. Now, as t tends to zero with positive values, so does
tλ, thus the above quantity tends to λh′(x , d). ∎

¿is positive homogeneity is especially useful in our case where the nondi�erentiable terms
are separable into unidimensional functionals. Decomposition similar to equation 1 can be
achieved, althoughmultiplicative terms δv now depend on the sign of the corresponding direction
coordinate.

Proposition 2.2. Under our assumptions, for all x ∈ dom F and for all d ∈ RV , F admits a
directional derivative at x in direction d, equal to

F′(x , d) = ∑
v∈V
dv>0

δ+v (x)dv + ∑
v∈V
dv<0

δ−v (x)dv + ∑
(u,v)∈E(x)=

w(u,v)∣du − dv ∣ , (2)

where for all v ∈ V, we de�ne

δ+v (x)
def= ∇v f (x) + д′v(xv ,+1) + ∑

(e ,u)∈E×V
e=(u,v) or (v ,u)

we sign(xv − xu) ,

and
δ−v (x)

def= ∇v f (x) − д′v(xv ,−1) + ∑
(e ,u)∈E×V

e=(u,v) or (v ,u)

we sign(xv − xu) .

Proof. ¿e existence of the directional derivative is provided as the sum of �nite or positively
in�nite limits. ¿e directional derivative of f and of (x1, x2) ↦ ∣x1 − x2∣ at a point where x1 ≠ x2
is given by di�erentiability. ¿en, the directional derivative of (x1, x2) ↦ ∣x1 − x2∣ at a point
where x1 = x2 in the direction (d1, d2) is easily found by writing in that case for all t > 0,
∣x1 + td1 − x2 − td2∣/t = ∣d1 − d2∣. Finally, let v ∈ V . If dv = 0 then д′v(x , dv) = 0. Otherwise,
using proposition 2.1 we get д′v(x , dv) = д′v(x , ∣dv ∣ sign(dv)) = ∣dv ∣д′v(x , sign(dv)) that is to say
д′v(x ,+1)dv if dv > 0 and −д′v(x ,−1)dv if dv < 0. ∎

In contrast to the di�erentiable case, it is nowpossible that for some vertices, neither increasing
+1 nor decreasing −1 direction is favorable, when looking for convenient descent directions. In
this case, such vertices are inclined not to change their value, that is to say the null direction 0
should be favored; this leads to the steepest ternary direction problem,

�nd d(x) ∈ argmin
d∈{−1,0,+1}V

F′(x , d) , (P4)

where for all x ∈ dom F and d ∈ {−1, 0,+1}V ,

F′(x , d) = ∑
v∈V
dv=+1

δ+v (x) − ∑
v∈V
dv=−1

δ−v (x) + ∑
(u,v)∈E(x)=

w(u,v)∣du − dv ∣ .

Observe that since F′(x , 0) = 0, any solution d(x) of problem P4 must satisfy F′(x , d(x)) ≤ 0.
Similarly to its binary counterpart, the steepest ternary direction corresponds to a minimum cut
in a suitable �ow graph, represented in �gure 1, which we note G(x)�ow = (V�ow , E(x)�ow , c

(x)). ¿e
vertex set is V�ow = (V × {1, 2}) ∪ {s, t}, s and t being respectively the speci�c source and sink
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t

u(1) v(1) w(1)

u(2) v(2) w(2)

w(u,v)

w(v ,u)

−δ−u(x) +mu

δ+u(x) +mu
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Figure 1: Schematic representation of the �ow graph G(x)�ow for the steepest ternary direction
problem P4. In this illustration, xu = xv ≠ xw .

vertices; we also use the convenient notation v(k) for (v , k) ∈ V × {1, 2}. ¿e edge set is de�ned
by

E(x)�ow
def= ⋃

v∈V
{(s, v(1)), (v(1), v(2)), (v(2), t)} ∪ ⋃

(u,v)∈E(x)=
k∈{1,2}

{(u(k), v(k)), (v(k), u(k))} .

In accordance with �gure 1, the edges de�ned in the le term are called vertical, while the edges
de�ned in the right term are called horizontal.

¿e associated capacities c(x) ∈ R∣E
(x)
flow ∣

+ are de�ned, for the horizontal edges, for all (u, v) ∈ E(x)=

and k ∈ {1, 2}, by c(x)
(u(k) ,v(k))

def= c(x)
(v(k) ,u(k))

def= w(u,v); and for the vertical edges, for all v ∈ V , by

c(x)
(s,v(1))

def= −δ−v (x) +mv , c(x)
(v(1) ,v(2))

def= mv and c(x)
(v(2) ,t)

def= δ+v (x) +mv ,

where mv
def= max(0, δ−v (x),−δ+v (x)), δ−v (x) and δ+v (x) being de�ned in proposition 2.2; note

that our de�nition of directional derivatives implies that δ−v (x) < +∞ and −δ+v (x) < +∞. ¿e
de�nition of mv ensures that all capacities are nonnegative, although potentially in�nite. An
additional bene�t is that for each v ∈ V , at least one of c(x)

(s,v(1)), c
(x)
(v(1) ,v(2)) and c

(x)
(v(2) ,t) is zero,

allowing for faster computation of the minimum cut via an augmenting path algorithm, such as
the one of Boykov and Kolmogorov (2004).

It can also be noted that this �ow graph is similar to the multistage structure proposed by
Ishikawa (2003), with one fewer stage and no in�nite so-called constraint edges; this is once again
favorable to augmenting path algorithms.

Proposition 2.3. Problem P4 can be solved by �nding a minimum cut in the graph G(x)�ow.
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δ+v (x) +mv
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v(1)
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−δ−v (x) +mv

δ+v (x) +mv
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v(1)

v(2)

−δ−v (x) +mv

δ+v (x) +mv

mv
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v(2)

(c) TS

s

t

v(1)

v(2)

−δ−v (x) +mv

δ+v (x) +mv

mv

v(1)

v(2)

(d) TT
vertex in S vertex in T vertical edge cut

Figure 2: Illustration of the con�gurations SS, ST, TS, and TT.

Proof. A cut is an ordered partition (S , T) of V�ow such that s ∈ S and t ∈ T ; we denote the cut
value by cut(S , T) def= ∑

(u,v)∈E(x)flow∩(S×T)
c(x)
(u,v). It is also convenient to de�ne the nonoriented edge

weight between two subsets U ,U ′ ⊂ V by w(U ,U ′) = ∑
(u,v)∈E(x)= ∩((U×U ′)∪(U ′×U))w(u,v).

Let (S , T) be a cut. Given a vertex v ∈ V , there are four possible con�gurations depending
on which set contains s, v(1), v(2) and t, as illustrated in �gure 2. Accordingly, we de�ne the sets
SS, ST ,TS,TT ⊆ V , where for A, B ∈ {S , T}, AB def= {v ∈ V ∣ v(1) ∈ A and v(2) ∈ B}.

We argue that if the set TS is nonempty, then one can �nd an alternative cut with a smaller or
equal value than (S , T) and for which no vertex in V presents the con�guration TS. Indeed, for
any vertex v ∈ TS, both vertical edges (s, v(1)) and (v(2), t) are cut by (S , T). Now, the number of
horizontal edges cut is determined by the con�guration of the neighbors: one for each neighbor
in SS or TT, two for each neighbor in ST, and zero for each neighbor also in TS. We can thus
write

cut(S , T) = ∑
v∈TS

(c(x)
(s,v(1)) + c

(x)
(v(2) ,t)) +w(TS, SS) +w(TS,TT) + 2 w(TS, ST) + K ,

where K is a constant which does not depend on the con�guration of the vertices in TS. Let us
now consider the cut (S′, T ′) in which all vertices of TS are switched to con�guration SS; more
precisely S′ = S∪(TS × {1}) and T ′ = T ∖(TS × {1}). Likewise, we consider (S′′, T ′′) for which
the vertices ofTS are switched to con�guration TT; S′′ = S∖(TS × {2}) and T ′ = T∪(TS × {2}).
We can write the value of these cuts as

cut(S′, T ′) = ∑
v∈TS

c(x)
(v(2) ,t)+w(TS, ST) + 2 w(TS,TT) + K ,

cut(S′′, T ′′) = ∑
v∈TS

c(x)
(s,v(1)) +w(TS, ST) + 2 w(TS, SS) + K .

We now show that at least one of cut(S′, T ′) or cut(S′′, T ′′) is smaller or equal to cut(S , T).
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Indeed, we have the following:

cut(S , T) − cut(S′, T ′) = ∑
v∈TS

c(x)
(s,v(1)) +w(TS, ST) +w(TS, SS) −w(TS,TT)

cut(S , T) − cut(S′′, T ′′) = ∑
v∈TS

c(x)
(v(2) ,t)+w(TS, ST) −w(TS, SS) +w(TS,TT).

Since all edgeweights are positive, at least one of cut(S , T)−cut(S′, T ′) or cut(S , T)−cut(S′′, T ′′)
must be positive, unless simultaneously all vertical edges have zero capacity, w(TS, ST) = 0, and
w(TS, SS) = w(TS,TT). In which case, all three cuts (S , T), (S′, T ′), and (S′′, T ′′) have the
same value.

We have proven that for any cut (S , T) for which TS is nonempty, we can �nd an alternative
cut for which it is empty and with smaller or equal value. Consequently, for a minimum cut (S , T)
ofG(x)�ow, the vertices in TS can be switched to con�guration SS without changing the resulting cut
value. Finally, to each such cut (S , T) satisfying TS = 0, we associate a direction d ∈ {−1, 0, 1}V

de�ned for all v ∈ V by dv
def= −1 if v ∈ TT, 0 if v ∈ ST, and+1 if v ∈ SS. ¿is mapping is one-to-one,

and satis�es

cut(S , T) = ∑
v∈SS

c(x)
(s,v(1)) + ∑

v∈ST
c(x)
(v(1) ,v(2)) + ∑

v∈TT
c(x)
(v(2) ,t)

+w(SS, ST) +w(ST ,TT) + 2w(SS,TT) ,
= F′(x , d) + ∑

v∈V
mv .

Since the term ∑v∈V mv does not depend on d, minimizing the value of the cut amounts to
minimizing d ↦ F′(x , d). ∎

2.2 Convergence Proof

We now turn to the convergence of algorithm 1 towards a stationary point of F. In our context, a
strictly negative directional derivative is called a strict descent direction, and a point x ∈ dom F is
called stationary if it admits no strict descent direction.

¿e convergence proof relies on the same kind of optimality certi�cate than the one used in the
original cut-pursuit paper by Landrieu and Obozinski (2017), for regularization of di�erentiable
functionals. Indeed, the steepest ternary direction at a point x not only indicates a re�nement
of the partitionV, it also allows us to determine the optimality of x as a solution of the main
problem P1, even though it is not a steepest descent direction in general.

However, while the proofs for di�erentiable functionals consider the �ows in G(x)�ow and relate
to atomic gauge theory, ours are more elementary. ¿ey focus on making explicit the fact that, as
long as the current iterate x is not stationary, steepest ternary descent directions induce further
re�nements of the partitionV. To do so, we introduce the concept of sign-segregation of a vector
de�ned over the graph G, which conveys the idea that neighboring vertices with the same sign
must also have the same value; this will be useful for manipulating descent directions.

De�nition 2.2. We say that a vector d ∈ RV is sign-segregated over G, if for all (u, v) ∈ E,
sign(du) = sign(dv) implies du = dv .

Consider then the following lemma.
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Figure 3: Illustration for the proof of lemma 2.1; d(0) is schematized in colors, positive coordinates
in red, negative in blue.

Lemma 2.1. Let x ∈ dom F. If F admits a strict descent direction at point x, then it admits a strict
descent direction which is sign-segregated over G.

Proof. Let d(0) ∈ RV be a strict descent direction for F at x ∈ RV . We construct recursively a
strict descent direction which is sign-segregated. Suppose �rst that the set of edges where d(0)

violates the sign-segregation with positive values, E(0)+
def= {(u, v) ∈ E ∣ sign(d(0)u ) = sign(d(0)v ) =

+1 and d(0)u ≠ d(0)v }, is nonempty.
¿e set of values of d(0) at the involved vertices, that is to say {d(0)v ∈ R ∣ ∃u ∈ V ∶ (u, v) ∈

E(0)+ or (v , u) ∈ E(0)+ }, is then nonempty and has a smallest element d(0)s associated to vertex
s. Let then U(0) ⊂ V be the largest connected component in G containing s over which d(0) is
constant equal to d(0)s . Now, the set of positive values of d(0) at vertices neighboring U(0), that is
to say {d(0)v ∈ R ∣ v ∈ V ∖U(0)∶ d(0)v > 0 and ∃u ∈ U(0)∶ (u, v) ∈ E or (v , u) ∈ E}, is nonempty
since s ∈ U(0) is a vertex involved in an edge within E(0)+ . Again, it has a smallest element d(0)t
associated to vertex t ∈ V ∖ U(0) and edge e(0) ∈ E connecting it to U(0). By construction, it
holds that for all u ∈ U(0), d(0)u = d(0)s , that d(0)t > d(0)s > 0 and that e(0) ∈ E(0)+ . We show in the
following that we can modify d(0) by substituting the value d(0)s , shared by all the U(0) vertices,
either by d(0)t or by 0, hence decreasing the number of edges on which sign-segregation is violated,
while keeping a strict descent direction.

According to proposition 2.2, the expression of the directional derivative F′(x , d(0)), in
function of the value d(0)s shared by all the U(0) vertices, is, up to a constant depending only on
the values at the V ∖U(0) vertices,

d(0)s ↦ ∑
u∈U(0)

δ+u (x)d
(0)
s + ∑
(e ,u,v)∈E(x)= ×U(0)×V

e=(u,v) or (v ,u)

we sign(d(0)s − d(0)v )(d(0)s − d(0)v ) .

¿is expression, with of the quantities δ+u (x), holds as long as d
(0)
s is nonnegative. Let now

(u, v) ∈ U(0) × V such that (u, v) ∈ E(x)= or (v , u) ∈ E(x)= , and proceed by case analysis. If
v ∈ U(0), then d(0)v = d(0)s . If v ∈ V ∖ U(0), then d(0)v ≠ d(0)s , otherwise contradicting the
de�nition ofU(0), d(0)v < d(0)s Ô⇒ d(0)v ≤ 0, otherwise contradicting the de�nition of d(0)s , and
d(0)v > d(0)s Ô⇒ d(0)v ≥ d(0)t , otherwise contradicting the de�nition of d(0)t . We deduce that the
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quantity sign(d(0)s − d(0)v ) remain constant for d(0)s ranging in ]0,d(0)t [ ; moreover, each term of
the sum is continuous at 0 and d(0)t . Altogether, the expression is linear in d(0)s over the range
[0,d(0)t ], with coe�cient a(0) def= ∑u∈U(0) δ

+
u (x) +∑(e ,u,v)∈E(x)= ×U(0)×V

e=(u,v) or (v ,u)

we sign(d(0)s − d(0)v ), and

reaches its extrema at 0 and d(0)t .
In accordance, we de�ne d(1) such that for all v ∈ V ∖U(0), d(1)v

def= d(0)v , and for all v ∈ U(0),
d(1)v

def= 0 if a(0) ≥ 0, d(0)t otherwise. ¿is ensures that F′(x , d(1)) ≤ F′(x , d(0)), while d(1) does
not violate sign-segregation over the edge e(0), because either d(1)s = d(1)t , or sign(d(1)s ) = 0 and
sign(d(1)t ) = +1.

We can then proceed with E(1)+ ⊆ E(0)+ ∖ e(0); doing so recursively provides a sequence of
strict descent directions, violating sign-segregation with positive values over a strictly decreasing
number of edges. ¿e same recursion can be applied mutatis mutandis, to take care of edges
over which sign-segregation is violated with negative values. ¿e total number of edges being
�nite, the desired sign-segregated strict descent direction is obtained a er a �nite number of
recursions. ∎

Sign-segregation facilitates the proof of the following fundamental proposition.

Proposition 2.4. Let x ∈ dom F. If F admits a strict descent direction at point x, then it admits a
strict descent direction in the set {−1, 0,+1}V .

Proof. Let d ∈ RV be a strict descent direction for F at x ∈ RV ; thanks to lemma 2.1, we can
assume that d is sign-segregated. ¿ere exists then a partitionU of V such that d is constant over
each component ofU, and takes di�erent signs over two components which are neighbors in G.

Now, by splitting the absolute di�erence of a, b ∈ R as ∣a − b∣ = sign(a − b)a + sign(b − a)b,
we can rewrite the directional derivative in equation 2 by regrouping the vertices according to
the partitionU, yielding

F′(x , d) = ∑
U∈U

∑
u∈U

δu(x , sign(du))du + ∑
(e ,u,v)∈E(x)= ×U×V
e=(u,v) or (v ,u)

we sign(du − dv)du ,

where for all u ∈ V and s ∈ {−1, 0,+1}, δu(x , s) def= δ+u if s = +1, δ−u otherwise. If ζ is the vector
ofRU such that d = ∑U∈U ζU 1U , this can be factorized as F′(x , d) = ∑U∈U ∆U(x , d)ζU , where
∆U(x , d) def= ∑u∈U δu(x , sign(du)) +∑(e ,u,v)∈E(x)= ×U×V

e=(u,v) or (v ,u)

we sign(du − dv).

Since F′(x , d) < 0, there exists at least one component U ∈ U such that ∆U(x , d)ζU < 0.
Let U be such a component, and let (u, v) ∈ U × V such that (u, v) ∈ E(x)= or (v , u) ∈ E(x)= . If
v ∈ U , we recall simply that dv = du = ζU and sign(du − dv) = 0. Now if v ∈ V ∖ U , then by
sign-segregation we know that sign(du) ≠ sign(dv), and then it follows by case analysis that
sign(du−dv) = sign(du−0) = sign(ζU). We deduce that ∆U(x , sign(ζU)1U) = ∆U(x , d); calling
on the above decomposition, we conclude F′(x , sign(ζU)1U) = ∆U(x , d) sign(ζU) < 0. ∎

Remark 2.1. ¿e proof of proposition 2.4 actually shows a slightly stronger conclusion, namely
that F admits a strict descent direction in the set {−1, 0}V ∪ {0,+1}V ⊂ {−1, 0,+1}V .

In order to use the above results for proving the termination and correctness of algorithm 1,
one should ensure that a stationary point of each reduced problem exists and can be found.
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In particular, note that when initializing the algorithm withV set= {V} as suggested, the mere
existence of feasible points for the �rst reduced problem requires that ∩v∈V dom дv ≠ 0. Of course,
it is still possible to initialize with a �ner partition if necessary, but these considerations are all
problem-dependent. For the scope of the present article, we thus assume the necessary existence
properties.

Corollary 2.1. Under our assumptions, algorithm 1 with D set= {−1, 0,+1}V �nds a stationary point
of the main problem P1.

Proof. We claim that, at the last step of each iteration, if the iterate x = ∑U∈V ξ(V)U 1U is not a
stationary point, then the cardinal ofV is strictly increased. Indeed, supposing otherwise means
that for all U ∈ V, the set of maximal constant connected components of (d(x)u )u∈U is reduced
to {U}, or in other words, d(x) is constant over U ; thus there exists ζ ∈ RV such that d(x) =
∑U ζU 1U . Let ζ be such a vector, and observe that for all t > 0, F(V)(ξ(V) + tζ) − F(V)(ξ(V)) =
F(∑U∈V(ξ(V)U +tζU)1U)−F(∑U∈V ξ(V)U 1U) = F(x + td(x))−F(x). We deduce that F(V) admits
a directional derivative at ξ(V) in direction ζ and that F(V)′(ξ(V), ζ) = F′(x , d(x)). If x is not
a stationary point for F, then by proposition 2.4, F′(x , d(x)) < 0, contradicting that ξ(V) is a
stationary point for F(V).

Now ∣V∣ ≤ ∣V ∣, thus by contraposition the algorithm terminates correctly in a �nite number
of iterations. ∎

2.3 Implementation Considerations

As with the regularization of di�erentiable functionals, the reduced problem P2 presents the same
structure as the main problem P1 in the presence of a separable nondi�erentiable part; indeed, it
decomposes as ξ ↦ ∑U∈V∑v∈U дv(ξU) = ∑U∈V γU(ξU), where each γU ∶R↦ ]−∞,+∞]. ¿us,
any algorithm solving the reduced problems can also solve the main problem. Nevertheless, it
o en happens that the former run much faster and give more precise results than the latter, and
the cut-pursuit can leverage this. When solutions with large constant connected components exist,
performance is improved by orders of magnitude, as we show numerically in § 3. Interestingly,
we observe on these problems that both crucial steps, namely solving the reduced problem and
re�ning the partition, take a signi�cant share of the total computational load. We give here
practical implementation considerations, important for robustness and e�ciency.

2.3.1 Discontinuities and Solutions of Reduced Problems

¿e cut-pursuit algorithm relies on directional derivatives of nondi�erentiable functions, thus
problems of discontinuity are to be expected. For once, the de�nition of the steepest ternary
problem P4 at a point x depends on the set of edges whose vertices share exactly the same
value, E(x)=

def= {(u, v) ∈ E ∣ xu = xv}; the absolute di�erences over all other edges are treated as
di�erentiable terms at x, however small the di�erence is. Likewise, the computation of δ+(x)
and δ−(x) requires identifying which coordinates xv lie at points of nondi�erentiability of the
corresponding дv .

¿is is an important limitation, since in most applications, solutions of reduced problems
are computed with iterative algorithms which are only asymptotically convergent; they are only
approximate solutions, within a certain tolerance error. Such solutions sometimes even lie slightly
outside the domain of the objective functionals, making things even worse. ¿ese facts cannot
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be ignored because nondi�erentiability points are usually points of interest for the problem at
hand; actually the very reason why nondi�erentiable terms are considered in the �rst place.
Consequently, we recommend setting up a threshold distance in coherence with the tolerance
error speci�ed for reduced problems. Coordinates which fall within this threshold of a nondi�er-
entiability point are treated as if they were exactly at this di�erentiability point. When doing so,
it is also pro�table to merge together neighboring components inV which are assigned close
values, because the lower the cardinal ofV, the smaller the reduced graph G and the faster the
solutions of the reduced problems.

Observe that calling on such approximations, optimality considerations of § 2.2 are not
strictly valid anymore; in particular, neighboring components can be alternatively merged a er
the reduced problem and split again a er the steepest direction problem, ad in�nitum. ¿us, we
also advocate terminating the algorithm when the iterate evolution is below a certain threshold,
once again in coherence with the tolerance on the reduced problems.

Another numerical di�culty which is worth mentioning is that components ofV can be very
di�erent in size, leading to bad conditioning of the reduced problem because large components
have much more importance than small ones, preventing accurate estimation of the latter. A
method that allows dealing with bad conditioning is thus required for solving the reduced
problem.

In our numerical experiments, we use the preconditioning of the forward-Douglas–Rachford
splitting algorithm illustrated by Raguet (2017), showing favorable behavior with respect to the
above considerations on the problems that we consider.

2.3.2 Maximum Flow

Although di�erent strategies have been developed for �nding maximum �ows in graphs, we only
considered the augmenting path strategy of Boykov and Kolmogorov (2004), which seems well
adapted to the structure of the �ow graph G(x)�ow described in § 2.1 and �gure 1. Let us underline
that the horizontal structure of the �ow graph is determined by the original graph G and the
components in the current partitionV; in particular, there is no horizontal edge between two
di�erent components of the partition, and a path from the source to the sink always goes through a
unique component.¿is provides a natural way of parallelizing the computation of the maximum
�ow along the components. Moreover, the re�nement of the partition which we propose is
essentially hierarchical, each component being split into several parts, which also suggests a
parallelization of the search for maximal connected components and might ease the memory
structure. We have not implemented such parallelization so far, and leave it for future works.

In addition, the steepest ternary direction problem P4 can be solved by an alternative mini-
mum cut strategy. For d ∈ RV , de�ne respectively the coordinate-wise minimum and maximum
min(d , 0), max(d , 0) ∈ RV , by for all v ∈ V , min(d , 0)v def= min(dv , 0) and max(d , 0)v def=
max(dv , 0). ¿en, it can be shown from proposition 2.2 that for all x ∈ dom F,

F′(x , d) = F′(x , min(d , 0)) + F′(x , max(d , 0)) ,
so that d ↦ F′(x , d) is minimized over {−1, 0,+1}V by the sum of a minimizer over {−1, 0}V
and of a minimizer over {0,+1}V . Each of the latter minima can be found by a minimum cut in
an adapted �ow graph like the one of �gure 1, but with only one stage. ¿is can be used to reduce
memory requirements; alternatively, if memory is not a concern, the two minimizations could be
performed in parallel. On our experiments below, we implemented this serially, with substantial
gain in terms of memory and no loss in terms of running time.
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2.4 Extension to Multidimensional Values

¿e very idea of the cut-pursuit algorithm 1 can be summarized as follows: solving a reduced
problem on a partition of V , �nding a steepest descent direction within a set D, and re�ning the
partition accordingly. In theory, this strategy could be applied in any setting; however, if the non-
di�erentiable part of F besides the graph total variation is not a separable sum of unidimensional
functionals, two di�culties arise. First, the set of descent directions D necessary for obtaining
an optimality certi�cate as in § 2.2 might be in�nite. Second, even if D is �nite, the problem of
�nding the steepest descent direction might not be tractable.

Nevertheless, one can think of situations where these problems can be heuristically addressed.
A typical one is when the nonsmooth functionals are not sums of unidimensional functionals,
but are still separable over the graph G, in the sense that there is no edge between the coordinates
over which each one is de�ned. ¿is situation is better modeled by saying that the values at the
vertices are multidimensional, say inRK where K is a �nite set. ¿e absolute value in the graph
total variation can be replaced by any norm overRK , and the resulting objective functional is
then de�ned, for all x ∈ RV×K , as

F(x) def= f (x) + ∑
v∈V

дv(xv) + ∑
(u,v)∈E

w(u,v)∥xu − xv∥ ,

where now for all v ∈ V , xv def= (x(v ,k))k∈K ∈ RK and дv ∶RK → ]−∞,+∞].
Compared to the setting of § 2.1, positive homogeneity of directional derivatives of the дv still

holds but unit descent directions cannot be summarized by ascending, +1, or descending, −1: as
soon as ∣K∣ ≥ 2, there is an in�nity of unit vectors. However, for a given vertex, only a handful of
descent directions inRK might seem relevant for the problem. Our �rst heuristic is to restrict the
set of considered directions by choosing them greedily for each vertex. For example, if for each
vertex v only one direction d̄v ∈ RK is considered, the set of directions is the Cartesian product
D set= ⨉v∈V{0, d̄v} ⊂ RV×K , and the corresponding steepest descent direction problem is binary.
It is easy to show that for all x ∈ dom F and d ∈ D,

F′(x , d) = ∑
v∈V
dv=d̄v

δ(x , d̄v) + ∑
(u,v)∈E(x)=

w(u,v)∥du − dv∥ ,

where the δ(x , d̄v) does not depend on d; so the problem can again be solved by �nding a
minimum cut in a (single stage) �ow graph according to ¿eorem 4.1 of Kolmogorov and Zabih
(2004), where condition (7) reduces to the triangle inequality for the norm de�ning the total
variation.

It must be underlined here that the setD above might be di�erent at each iteration, depending
on the current iterate x. Moreover, one can consider richer sets of direction per vertex, D set=
⨉v∈V Dv , where each Dv is a �nite subset ofRK . Now, the steepest descent direction problem is a
multilabel one, and in general cannot be easily solved. Fortunately, greedy strategies such as α-
expansion or α-β swap, as described for instance by Boykov et al. (2001), can provide satisfactory
approximate solutions by solving a succession of a few binary problems like the above.

We say that these approaches are heuristics because in the general case no optimality can be
provided, neither for the original optimization problem, nor for the steepest descent problem
when more than two descent directions are considered per vertex. Nonetheless, we show below,
on a simplex-constrained labeling problem, that they can be e�cient.
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3 Numerical Experiments

Raguet (2017) illustrates his preconditioning of the forward-Douglas–Rachford splitting algorithm
(PFDR) on medium- and large-scale problems arising respectively from signal processing and
machine learning tasks, on which it compares favorably with state-of-the-art proximal splitting
methods. We show the considerable improvement o�ered by the cut-pursuit (CP) approach on
the exact same optimization problems, using PFDR for solving the reduced problems. In the
comparisons, we also include the preconditioned primal-dual splitting algorithm of Pock and
Chambolle (2011, PPD) because of its popularity; note that it is closely related to the alternating
direction method of multipliers, o en coined ADMM.

¿e experimental setting is extensively described by Raguet (2017, § 4), and we refer the
reader to this note for details. We use slight improvements of his implementation of PFDR
and PPD in C++ with parallelization of most operators with OpenMP speci�cations, and run
the experiments on a personal computer with eight cores at 2.80GHz and dual-channel DDR4
memory at 2.40GHz.¿e source code for CP and PFDR is available at one of the author’s GitHub
repository.1

In the following, if C is a convex closed set of a vector space Ω, we note the convex indicator
functional ιC ∶Ω → ]−∞,+∞]∶ x ↦ 0 if x ∈ C, +∞ otherwise.

3.1 Inverse Problem in Electroencephalography

Electroencephalography records brain activity via electrodes put at the surface of a subject’s head.
¿e relationship between activation of the brain regions and the electrodes’ recording can be
modeled by a linear operator called lead-�eld operator. ¿e brain regions are modeled as vertices
of a tridimensional mesh, G set= (V , E), and a brain activation map is thus a vector ofRV . Yet, the
number of electrodes being much smaller (here, N set= 91) than the resolution of the desired brain
image (here, ∣V ∣ set= 19 626), the problem of retrieving brain activation map from the electrodes’
recording is ill-posed. Moreover, the latter usually su�ers from acquisition noise.

Fortunately, following Becker et al. (2014), a reasonable assumption is that at a given time,
only scarce regions of the brain are really activated, and that spatially neighboring regions are
o en similarly activated. In addition, we use a recording time point where the entire signal is
known to be nonnegative. All this prior knowledge can be enforced by modeling the brain source
as a minimizer overRV of

F∶ x ↦ 1
2∥y −Φx∥

2 + ∑
v∈V

(λv ∣xv ∣ + ιR+(xv)) +∑
(u,v)∈E

w(u,v)∣xu − xv ∣ ,

where y ∈ RN is the observation overN electrodes andΦ∶RV → RN is the lead-�eld operator.¿e
�rst term is a square Euclidean norm ensuring coherence with the observation; it is di�erentiable.
¿e second term is comprised of both a weighted ℓ1-norm and a convex indicator, enforcing
respectively sparsity and positivity; it is nondi�erentiable but separable over G. ¿e third term is
the graph total variation enforcing spatial similarity.

Altogether, this is of the form of problem P1, and the cut-pursuit algorithm can be easily
applied following §§ 2.1 and 2.3. Once again,we refer the reader to the note of Raguet (2017, § 4) for
details on the competing algorithms. Following his methodology, we prescribe stopping criteria
as minimum relative evolution of the iterates, decreasing from 10−4 to 10−6; for the reduced

1https://github.com/1a7r0ch3/CP_PFDR_graph_d1

https://github.com/1a7r0ch3/CP_PFDR_graph_d1
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Figure 4: Optimization comparisons.

Table 1: Brain source identi�cation in electroencephalography: prediction performance and
running time comparisons.1 For the 10−8 stopping criterion, PPD and PFDR were stopped at 105
iterations.

stop.
criterion

CP PFDR PPD
DS DSa time (s) DS DSa time (s) DS DSa time (s)

10−4 0.32 0.78 0.17 0.24 0.76 3 0.13 0.66 7
10−5 0.32 0.78 0.17 0.31 0.74 12 0.25 0.78 22
10−6 0.32 0.78 0.19 0.31 0.78 47 0.30 0.78 34
10−8 0.32 0.78 0.25 0.32 0.78 191 0.32 0.78 180

problems in CP, the stopping criterion is set to one thousandth of this value. We also consider
longer runs of the algorithms with a stopping criterion of 10−8 for CP and stopped a er 105
iterations for PPD and PFDR.

In this experiment, and for all stopping criteria considered, CP terminates a er 11 iterations,
with only 20 maximal constant connected components. In such a favorable case, it outperforms
the two other algorithms by several orders of magnitude, as illustrated on �gure 4(a), where the
optimal F∞ is approximated with CP with stopping criterion 10−8. Formore in-depth comparison,
we also report the computing times1 in table 1. Moreover, as the data are synthetic, the original
brain activity is known, andwe can assess the relevance of themodel for brain source identi�cation
by computing the Dice score between the supports of the retrieved activity and of the ground
truth.We also report an approximate Dice score, DSa , where small absolute values of the solutions
are discarded with a simple 2-means algorithm.

1Di�erences with earlier results of Raguet (2017, § 4) are explained by better hardware and better memory manage-
ment in the implementation, favorable to PFDR and even more to PPD.
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3.2 Semantic Labeling of 3D Point Cloud

We consider the task of assigning a semantic label (car, vegetation, road, etc...) to each point of a
3D point cloud acquired with a LiDAR. ¿is is usually performed with a supervised classi�er
such as a random forest, whose features can be derived from the local neighborhood of the points,
or from the global structure of the scene; see for instance the works of Weinmann et al. (2015)
and Guinard and Landrieu (2017).

If V denotes the set of points and K the set of labels, the random forest classi�er provides
a probabilistic classi�cation q ∈ RV×K , where for each v ∈ V , qv def= (q(v ,k))k∈K belongs to the
simplex △K

def= {p ∈ RK ∣∑k∈K pk = 1 and ∀ k ∈ K , pk ≥ 0}. Although it generally gives good
results, it lacks the spatial regularity which can be expected from LiDAR acquisitions; following
Landrieu et al. (2017), this can be improved by encoding an adjacency structure on a graph
G set= (V , E), and minimizing overRV×K the functional

F∶ p ↦ ∑
v∈V

KL(βu + (1 − β)qv , βu + (1 − β)pv) + ∑
v∈V

ι△K(pv) +∑
(u,v)∈E

w(u,v)∥pu − pv∥1 ,

where for all r, s ∈ △K , KL(r, s) def= ∑k∈K rk log(rk/sk) is the Kullback–Leibler divergence, u
def=

(1/∣K∣)k∈K ∈ △K is the uniformdiscrete distribution, and β ∈ ]0, 1[ is a small smoothing parameter.
¿e �rst term favors similarity with the original predictions; it is di�erentiable. ¿e second term
ensures that each labeling is a discrete probability distribution; it is nondi�erentiable but separable
over G. ¿e third term is the graph total variation enforcing spatial similarity, where we use the
ℓ1 norm, well adapted to simplex-constrained values.

Altogether, this satis�es the multidimensional setting described in § 2.4. To construct the
set of candidate descent directions, consider an iterate p ∈ △K

V and a direction d ∈ RV×K .
Note that that for all v ∈ V , ι△K

′(pv , dv) = +∞ if ∑k∈K d(v ,k) ≠ 0, or if there exists k ∈ K
such that, either p(v ,k) = 0 and d(v ,k) < 0, or p(v ,k) = 1 and d(v ,k) > 0. Consequently, for
each v ∈ V , we propose to de�ne kv ∈ argmaxk∈K {p(v ,k)} a label with maximum probability,
and set Dv

set= {0} ∪ {1{k} − 1{kv} ∈ RK ∣ k ∈ K ∖ {kv}}. ¿e steepest descent direction is then a
combinatorial problem with ∣K∣ labels which we approximately solve with a single α-expansion
cycle.

¿e graph contains ∣V ∣ = 3 000 111 vertices and ∣E∣ = 17 206 938, and the task comprises ∣K∣ = 6
classes. Stopping criteria are again taken from the experiments of Raguet (2017), and an estimate
of the optimal value F∞ is computed with a longer run. Figure 4(b) represents the evolution of
the objective functional values over time. ¿e results are less impressive than in the previous
experiment, but once again, CP reaches lower objective values an order of magnitude faster than
PFDR; a er only 4 iterations, with a total of 863 maximal constant connected components.

Let us underline that in this setting, themajority of the computational time is devoted to graph
cuts. Indeed, starting at the direction d = 0, an entire α-expansion cycle requires 5 successive
graph cuts, over the huge original graph. ¿ere is thus room for signi�cant improvements by
parallelizing the cuts as explained along § 2.3.2, or by exploring better strategies for searching
descent directions.

4 Conclusion and Perspectives

¿is paper provides a theoretical and practical framework for harnessing the speed of e�cient
graph-cut algorithms for a large class of graph-structured problems involving nondi�erentiable
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terms alongside the total variation.
We believe that our algorithm overcomes three important limitations. First, solving total-

variation regularized problems in high dimension is known to be di�cult. Computational lim-
itations might have led some works to use unconverged solutions, providing unsatisfying or
inconsistent results. Cut-pursuit addresses this problem through its considerable acceleration, at
least when the number of �nal constant connected components is reasonable.

Second, even when satisfying solutions can be found, practical applications o en require
lengthy exploration of regularization parameters at a prohibitive computational cost. Cut-pursuit
can bene�t from warm-restart of the partition, for scanning from high to low regularization
strength, as already pointed out by Landrieu et al. (2017, § 2.6).

¿ird, convexity of the total-variation,while being convenient for optimization considerations,
makes it sometimes not restrictive enough as a regularizer, admitting several solutions with many
level sets. In some cases it is preferable to obtain spatially homogeneous solutions with only few
level sets, which are in general better enforced with nonconvex regularizations. On the basis of its
very principle and of our �rst numerical experiments, we argue that the cut-pursuit scheme favors
the solutions with the fewest constant connected components, mitigating this third concern.

Altogether, it seems that many applications of the total-variation would bene�t from our
approach, and that our algorithm might spark a renewed interest of this regularization in the
future.
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