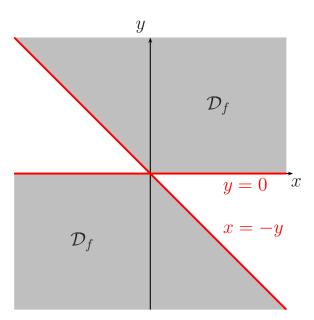
Université d'Aix-Marseille, Licence SPC, 1^{re} année, 2^e semestre Mathématiques II : Correction du partiel 1

Hugo Raguet

Exercice 1 (5 points). On considère la fonction $f:(x,y)\mapsto \ln\left(1+\frac{x}{y}\right)$.

(a) La fonction f est la composition de la fonction $u \mapsto \ln(u)$, définie sur $]0, +\infty[$, et de la fonction $(x,y) \mapsto 1 + \frac{x}{y}$, définie sur $\mathbb{R} \times \mathbb{R}^*$. On a donc, en notant \mathcal{D}_f le domaine de définition de f, $\mathcal{D}_f = \left\{ (x,y) \in \mathbb{R} \times \mathbb{R}^* \mid 1 + \frac{x}{y} > 0 \right\}$. Soit $(x,y) \in \mathbb{R} \times \mathbb{R}^*$. On a l'équivalence $1 + \frac{x}{y} > 0 \Leftrightarrow \frac{x}{y} > -1$. Procédons alors par disjonction de cas. Soit y > 0, alors $1 + \frac{x}{y} > 0 \Leftrightarrow x > -y$. Soit y < 0, alors $1 + \frac{x}{y} > 0 \Leftrightarrow x < -y$. On conclut

$$\mathcal{D}_f = \{(x, y) \in \mathbb{R} \times] - \infty, 0[\mid x < -y \} \cup \{(x, y) \in \mathbb{R} \times]0, +\infty[\mid x > -y \} .$$



(b) La fonction $u \mapsto \ln(u)$ est continue et dérivable sur son domaine de définition, et la fonction $(x,y) \mapsto 1 + \frac{x}{y}$ est une fraction rationnelle, donc aussi continue et dérivable sur son domaine de définition. On en conclut que, en tant que composée des deux précédentes, f est à son tour continue et dérivable sur son domaine de définition.

Exercice 2 (5 points). On considère la fonction

$$f: (x,y) \mapsto \begin{cases} \frac{x^2y}{x^4 - 2x^2y + 3y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

(a) La fonction f est définie sur

$$\{(x,y) \in \mathbb{R}^2 \mid x^4 - 2x^2y + 3y^2 \neq 0\} \cup \{(0,0)\}$$
.

Soit $(x,y) \in \mathbb{R}^2$. En développant, on a bien $x^4 - 2x^2y + 3y^2 = (x^2 - y)^2 + 2y^2$. Procédons alors par disjonction de cas. Soit y = 0, alors $(x^2 - y)^2 + 2y^2 = x^4$, et donc $x^4 - 2x^2y + 3y^2 = 0 \Leftrightarrow x = 0$. Soit $y \neq 0$, alors $y^2 > 0$, et avec $(x^2 - y)^2 \geq 0$, on obtient $x^4 - 2x^2y + 3y^2 > 0$. En conclusion, $x^4 - 2x^2y + 3y^2 = 0 \Leftrightarrow (x, y) = (0, 0)$, et f est donc bien définie sur \mathbb{R}^2 .

(b) Pour tout $y \in \mathbb{R}^*$, on a $f(0,y) = \frac{0}{3y^2} = 0$, donc $\lim_{y\to 0} f(0,y) = 0$. Soit $m \in \mathbb{R}$. Pour tout $x \in \mathbb{R}^*$, on a

$$f(x, mx) = \frac{x^2mx}{x^4 - 2x^2mx + 3(mx)^2} = \frac{x^2mx}{x^2(x^2 - 2mx + 3m^2)} = \frac{mx}{x^2 - 2mx + 3m^2}.$$

Soit m = 0, alors f(x, mx) = 0 et on conclut $\lim_{x\to 0} f(x, 0) = 0$. Soit $m \neq 0$, alors $\lim_{x\to 0} x^2 - 2mx + 3m^2 = 3m^2 \neq 0$ et on conclut $\lim_{x\to 0} f(x, mx) = 0$.

(c) Pour tout $x \in \mathbb{R}^*$, on a

$$f(x, x^2) = \frac{x^4}{x^4 - 2x^4 + 3x^4} = \frac{x^4}{2x^4} = \frac{1}{2}$$
.

Donc $\lim_{x\to 0} f(x, x^2) = \frac{1}{2}$.

(d) Si f admet une limite en (0,0), alors cette limite doit être unique. On en conclut que f n'admet pas de limite en (0,0); en particulier, elle n'est pas continue en (0,0).

Exercice 3 (Droites du plan affine – 5 points). On considère les trois points du plan A(1,2), B(2,1) et C(-1,m), où $m \in \mathbb{R}$ est un paramètre.

(a) Un vecteur directeur de la droite (AB) est $\overrightarrow{AB} = (2-1, 1-2) = (1, -1)$. Or, $A \in (AB)$, on en déduit une représentation paramétrique

$$(AB) = \{(1,2) + t(1,-1) \in \mathbb{R}^2 \mid t \in \mathbb{R}\},$$

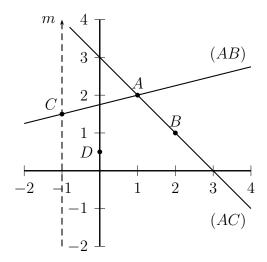
= \{(1+t,2-t) \in \mathbb{R}^2 \cong t \in \mathbb{R}\}.

Or, pour tout $t \in \mathbb{R}$, (1+t)+(2-t)=3, donc $(AB)=\{(x,y)\in \mathbb{R}^2 \mid x+y-3=0\}$. Similairement, on a $\overrightarrow{AC}=(-1-1,m-2)=(-2,m-2)$, et

$$(AC) = \{(1 - 2t, 2 + (m - 2)t) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}\$$
.

Enfin, pour tout $t \in \mathbb{R}$, (m-2)(1-2t)+2(2+(m-2)t)=(m-2)+4=m+2, donc $(AC)=\{(x,y)\in\mathbb{R}^2\mid (m-2)x+2y-(m+2)=0\}$.

- (b) (AB) et (AC) sont parallèles si, et seulement si, \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires, donc si, et seulement si, $\det(\overrightarrow{AB}, \overrightarrow{AC}) = 0$. Or, $\det(\overrightarrow{AB}, \overrightarrow{AC}) = \begin{vmatrix} 1 & -2 \\ -1 & m-2 \end{vmatrix} = 1(m-2) (-1)(-2) = m-4$. Finalement (AB) et (AC) sont parallèles si, et seulement si m=4. En ce cas, elles sont confondues car $A \in (AB) \cap (AC)$.
- (c) Soit D le point du plan défini par $\overrightarrow{BD} = \overrightarrow{AC}$. Le parallélogramme \overrightarrow{ABDC} est engendré par \overrightarrow{AB} et \overrightarrow{AC} , donc son aire est égale à $|\det(\overrightarrow{AB}, \overrightarrow{AC})| = |m-4|$. L'aire du triangle est la moitié de l'aire du parallélogramme, c'est-à-dire $\frac{|m-4|}{2}$.

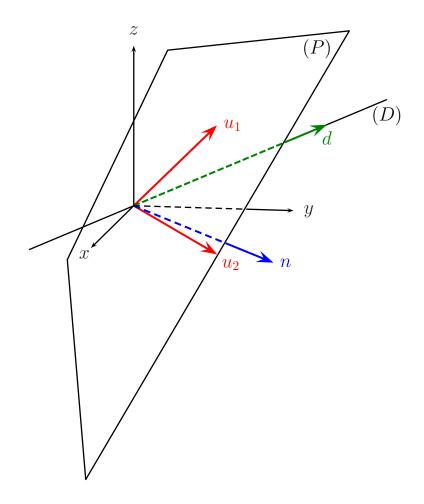


Exercice 4 (Géométrie vectorielle dans l'espace – 5 points). Dans \mathbb{R}^3 , on considère le plan vectoriel (P), de vecteurs directeurs $u_1 = (1, 1, 1)$ et $u_2 = (2, 1, 0)$.

(a) Un vecteur normal à (P) est

$$n = u_1 \wedge u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \wedge \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 - 1 \\ -(0 - 2) \\ 1 - 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}.$$
On en déduit $(P) = \{v \in \mathbb{R}^3 \mid v \cdot n = 0\} = \{(x, y, z) \in \mathbb{R}^3 \mid -x + 2y - z = 0\}.$

- (b) Soit (D) la droite vectorielle de vecteur directeur d=(1,2,1). On a par exemple $d \cdot u_1 = 1+2+1=4 \neq 0$, donc (D) n'est pas orthogonale à (P). Ensuite, on a $d \cdot n = -1+4-1=2 \neq 0$, donc (D) n'est pas incluse dans (P).
- (c) On a $d \cdot u_1 = ||d|| ||u_1|| \cos(\widehat{d}, u_1)$. Or, $||u_1|| = \sqrt{1 + 1 + 1} = \sqrt{3}$, $||d|| = \sqrt{1 + 4 + 1} = \sqrt{6}$. On en déduit $\cos(\widehat{d}, u_1) = \frac{4}{\sqrt{18}} = \frac{4}{3\sqrt{2}}$. Ensuite, $\cos^2(\widehat{d}, u_1) + \sin^2(\widehat{d}, u_1) = 1$, et on a $\sin(\widehat{d}, u_1) > 0$ (on s'intéresse à l'angle aigü), on en déduit $\sin(\widehat{d}, u_1) = \sqrt{1 \frac{16}{18}} = \sqrt{\frac{2}{18}} = \frac{1}{3}$. De même, $d \cdot u_2 = 2 + 2 + 0 = 4$, et $||u_2|| = \sqrt{4 + 1 + 0} = \sqrt{5}$, donc $\cos(\widehat{d}, u_2) = \frac{4}{\sqrt{30}}$, puis $\sin(\widehat{d}, u_2) = \sqrt{1 \frac{16}{30}} = \sqrt{\frac{14}{30}} = \frac{7}{15}$.



Légende de la correction sur votre copie :

