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A Generalized Forward-Backward Splitting*
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Abstract. This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum
of maximal monotone operators B + Y " | A;, where B is cocoercive. It involves the computation
of B in an explicit (forward) step and the parallel computation of the resolvents of the A;’s in a
subsequent implicit (backward) step. We prove the algorithm’s convergence in infinite dimension
and its robustness to summable errors on the computed operators in the explicit and implicit steps.
In particular, this allows efficient minimization of the sum of convex functions f + > 7, gs, where
f has a Lipschitz-continuous gradient and each g; is simple in the sense that its proximity operator
is easy to compute. The resulting method makes use of the regularity of f in the forward step,
and the proximity operators of the g;’s are applied in parallel in the backward step. While the
forward-backward algorithm cannot deal with more than n = 1 nonsmooth function, we generalize
it to the case of arbitrary n. Examples on inverse problems in imaging demonstrate the advantage
of the proposed methods in comparison to other splitting algorithms.
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1. Introduction. Throughout this paper, H denotes a real Hilbert space endowed with
scalar product (-|-) and associated norm || - ||, Id is the identity operator on H, and n is a
positive integer.

1.1. Structured monotone inclusion and minimization problems. We consider the fol-
lowing monotone inclusion problem:
(1.1) Find z € {Zer B+ Ax) Z (zeH|0e B+ Y7, AZ-;L«}} ,
where B : H + H is cocoercive and, for all i, A; : H +— 2" is a maximal monotone set-
valued map. While such inclusion problems arise in various fields, our main motivation is
to solve convex minimization problems. Indeed, it is well known that the subdifferential
Jg; of a function g; € T'g(H) is a maximal monotone map, I'g(H) being the class of lower
semicontinuous, proper, convex functions from H to |—oo,+o00|. If, moreover, f € I'o(H)
is differentiable with a Lipschitz-continuous gradient, then the Baillon-Haddad theorem [5]
asserts that V f is cocoercive. Defining F o [+ > gi, the set of minimizers of F verifies

argmin F' = zer (Vf + >, 0g;) ,
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provided that the following conditions hold:

(H1) argmin F' # 0,

(H2) (0,...,0) € srif{(x —y1,...,x — yn)‘x € H and Vi, y; € domg;},
where domg & {z € 7-[| g(z) < 400} denotes the domain of a function g and sriC' denotes
the strong relative interior of a nonempty convex subset C' of H [6]. Therefore, identifying B
with V f and the A;’s with the Jg;’s, solving (1.1) allows us to solve

. def -
(1.2) min {F(:z:) “f ) + ;W)} .

The structured monotone inclusion problem (1.1) is fairly general, and a wide range of
iterative algorithms for solving it take advantage of the specific properties of the operators
involved in the summand. As we will see, one crucial property is the possibility of computing
the resolvent of a maximal monotone operator A, denoted J4. It is defined as (see section 4.1
for details)

Jax =1y & rey+ Ay .

For a given x € H, computing J4x is in itself a monotone inclusion problem, but it turns out
that it can be solved explicitly for many operators; e.g., the action of the resolvent can be
easily computed in closed form. Our interest is in splitting methods to solve (1.1): iterative
algorithms that evaluate individually the operator B (cocoercive) and the resolvents Jy,, at
various points of H, but not the resolvents of sums.

The next section recalls several important previous works on splitting algorithms, focusing
on their application to convex optimization.

1.2. Splitting methods for minimization problems. If g is a function in I'o(#), the re-
solvent of its subdifferential, Jp,, can be shown (see section 4.1) to be equal to the Moreau
proximity operator of g [60], defined for all x € H as

prox,(z) ¥ argmin 1|z — y|* + g(y) -
yeEH

Again, this can be solved explicitly for many functions; such functions are dubbed “simple.”

Another important property of some part of a functional to be minimized is differentia-
bility. Recalling (1.2), the forward-backward algorithm applies if f is differentiable with a
Lipschitz-continuous gradient, and n = 1 with g; simple. This scheme consists in performing
alternatively a gradient-descent (corresponding to an explicit step on the function f) followed
by a proximal step (corresponding to an implicit step on the function g1). Such a scheme can
be understood as a generalization of the projected gradient method. This algorithm, which
finds its roots in numerical analysis for PDEs, has been well studied for solving monotone in-
clusion and convex optimization problems [9, 19, 27, 45, 57, 62, 73, 75]. Accelerated multistep
versions for convex optimization have been proposed [8, 61], which enjoy a faster convergence
rate of O(1/k?) on the objective F' in the general case, where k is the iteration counter.

Other splitting methods do not require any smoothness on any part of the composite
functional F'. The Douglas—Rachford (DR) scheme was originally developed to find the zeros
of the sum of two linear operators [31], and then two nonlinear operators in [53] or two maximal
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monotone operators in [55]; see also [20, 37]. This scheme applies to minimizing g; + go,
provided that g; and g, are simple. The backward-backward algorithm [1, 7, 20, 54, 62] can
be used to minimize F' = g1 4+ g2 when the functions involved are the indicator functions
of nonempty closed convex sets or involve Moreau envelopes. Interestingly, if one of the
functions g1 or gs is a Moreau envelope and the other is simple, the backward-backward
algorithm amounts to a forward-backward scheme.

If L is a bounded injective linear operator, it is possible to minimize F' = g1 o L +
go by applying these splitting schemes on the Fenchel-Rockafellar dual problem. It was
shown that applying the DR scheme leads to the alternating direction method of multipliers
(ADMM) [37, 44, 45, 46, 47]. For nonnecessarily injective L and g9 strongly convex with a
Lipschitz-continuous gradient, the forward-backward algorithm can be applied to the Fenchel—
Rockafellar dual [22, 40]. Dealing with an arbitrary bounded linear operator L can be achieved
using primal-dual methods motivated by the classical Kuhn—Tucker theory. Starting from
methods to solve saddle function problems such as the Arrow—Hurwicz method [3] and its
modification [66], the extragradient method [49], this problem has received a lot of attention
more recently [11, 14, 18, 59, 70, 74].

It is also possible to extend the DR algorithm to an arbitrary number n > 2 of simple
functions. Inspired by the method of partial inverses [71, section 5], most methods rely
either explicitly or implicitly on introducing auxiliary variables and bringing back the original
problem to the case n = 2 in the product space H". Doing so yields iterative schemes in which
one performs independent parallel proximal steps on each of the simple functions and then
computes the next iterate by essentially averaging the results. Variants have been proposed
in [24], and in [38], which describes a general projective framework that does not reduce the
problem to the case n = 2. These extensions, however, do not apply to the forward-backward
scheme that can handle only n = 1. It is at the heart of this paper to present such an
extension.

Recently proposed methods extend existing splitting schemes to handle the sum of any
number of n > 2 composite functions of the form g; = h; o L;, where the h;’s are simple
and the L;’s are bounded linear operators. Let us denote by L;* the adjoint operator of L;.
If L; satisfies L;L;* = vId for any v > 0 (it is a so-called tight frame), h; o L; is simple
as soon as h; is simple and L;* is easy to compute [23]. This case thus reduces to the
previously reviewed ones. If L; is not a tight frame but (Id+L;*L;) or (Id +L;L;*) is easily
invertible, it is again possible to reduce the problem to the previous cases by introducing,
for each L;, an auxiliary variable belonging to its range. Note, however, that, if solved
with the DR algorithm on the product space, the auxiliary variables are also duplicated,
which would increase significantly the dimensionality of the problem. Some dedicated parallel
implementations were specifically designed for the case where (3, L*L;) or (>, L;L;*) is
(easily) invertible; see, for instance, [36, 63]. If the L;’s satisfy none of the above properties,
it is still possible to call on primal-dual methods, either by writing ' =" ; hjoL; = go L
with L(z) = (L;(z)); and g((x;);) = >_; hi(z;) (see, for instance, [33]) or by solving on the
product space F((x;);) = >, hi (Lix;) + ts((x;);) [11], where s is the indicator function of
the closed convex set & defined in section 4.2.

In spite of the wide range of already existing proximal splitting methods, none seems to
satisfactorily address explicitly the case where n > 1 and f is smooth but not necessarily
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simple. A workaround that has been proposed previously uses nested algorithms to compute
the proximity operator of ). ¢g; within subiterations (see, for instance, [17, 32]); this leads
to practical as well as theoretical difficulties in selecting the number of subiterations. More
recently, [59] proposed an algorithm for minimizing F = f + ¢ under linear constraints.
We show in section 2.3 how this can be adapted to address the general problem (1.2) while
achieving full splitting of the proximity operators of the g;’s and using the gradient of f.
In preparing a first draft of this paper, we became aware that other authors [26, 28, 76|
have independently and concurrently developed primal-dual algorithms to solve problems that
encompass the one we consider here. These approaches and algorithms are, however, different
from ours in many important ways. This will be discussed in detail in section 2.3 especially
in relation to [26]. We also report some numerical experiments in section 3 suggesting that
our primal algorithm is more adapted for imaging problems of the form (1.2).

1.3. Applications in image processing. Many imaging applications require solving ill-
posed inverse problems to recover high quality images from low-dimensional and noisy ob-
servations. These challenging problems necessitate the use of regularization through prior
models to capture the geometry of natural signals, images, or videos. Numerical solution of
inverse problems can be achieved through minimization of objective functionals, with respect
to a high-dimensional variable, that takes into account both a term for fidelity to the obser-
vations and regularization terms reflecting the priors. Clearly, such functionals are composite
by construction, hence fitting in the framework of (1.2). Section 3 details several examples of
such inverse problems.

In many situations, this leads to the optimization of a convex functional that can be split
into the sum of convex smooth and nonsmooth terms. The smooth part of the objective is
in some cases a data fidelity term and reflects some specific knowledge about the forward
model, i.e., the noise and the measurement/degradation operator. This is, for instance, the
case if the operator is linear and the noise is additive Gaussian, in which case the data
fidelity is a quadratic function. The most successful regularizations that have been advocated
are nonsmooth, which typically allows one to preserve sharp and intricate structures in the
recovered data. Among such priors, sparsity-promoting ones have become popular, e.g., the
¢1-norm of coefficients in a wisely chosen dictionary [56], or a total variation (TV) prior [69].
To better model the data, composite priors can be constructed by summing several suitable
regularizations; see, for instance, the morphological diversity framework [72]. The proximity
operator of the ¢;-norm penalization is a simple soft-thresholding [30], whereas the use of
complex or mixed regularization priors justifies the splitting of nonsmooth terms in several
simpler functions (see section 3 for concrete examples).

The composite structure of convex optimization problems arising when solving inverse
problems in the form of a sum of simple and/or smooth functions involving linear operators
explains the popularity of proximal splitting schemes in imaging science. Depending on the
structure of the objective functional as detailed in the previous section, one can resort to
the appropriate splitting algorithm. For instance, the forward-backward algorithm and its
modifications have become popular for sparse regularization with a smooth data fidelity; see,
for instance, [8, 10, 16, 27, 29, 41, 43]. The DR and its parallelized extensions were also
used in a variety of inverse problems implying only nonsmooth functions; see, for instance,
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[12, 17, 23, 24, 34, 32, 35, 67]. The ADMM (which is nothing but DR on the dual) was also
applied to some linear inverse problems in [2, 42]. Primal-dual schemes [14, 33] are among the
most flexible schemes for handling more complicated priors. The interested reader may refer
to [72, Chapter 7] and [25] for extensive reviews.

1.4. Contributions and paper organization. This paper introduces a novel generalized
forward-backward (GFB) algorithm to solve the monotone inclusion (1.1). The algorithm
achieves full splitting where all operators are used separately: an explicit step for B (single-
valued) and a parallelized implicit step through the resolvent of the A;’s. We prove convergence
of the algorithm even when summable errors may contaminate the iterations. To the best of
our knowledge, it is among the first algorithms to tackle the case where n > 1 (see section 2.3
for relation to other works). Although our numerical results are reported only on imaging
applications, the algorithm may prove useful for many other applications such as machine
learning, statistical estimation, or optimal control.

Section 2 presents the algorithm and states our main theoretical result, before comment-
ing on some relevant aspects and on alternatives in the literature. Numerical examples are
reported in section 3 to show the usefulness of this approach for imaging problems. The con-
vergence proof is deferred to section 4, after recalling some preliminary results on monotone
operator theory.

2. Generalized forward-backward splitting.

2.1. The algorithmic scheme. We consider problem (1.1), where all operators are maxi-
mal monotone, B is 3-cocoercive with § € ]0,+o0]; i.e.,

and for all ¢ and all v > 0, J4, (the resolvent of vA;) is easy to compute. Our proposed GFB
algorithm is detailed in Algorithm 1.

Algorithm 1. A generalized forward-backward algorithm for solving (1.1).
B €10, +00[ is a cocoercivity constant of B.
(2i)ieping € H" (Wi)iep1ng €10, 1]" such that > 7 w; =1,
v €]0,26], A €]0,min (3,5 +2)[VkeN,
Initialization
T Y Wiz
k+ 0.
Main iteration
repeat
for i € [1,n] do

L (2.1) z; < z +Ak(J;Ai(2a; — 2z —'yBx) — x);

Require

Ty Wiz
k< k+1.
until convergence;

Return z.
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To state our main theorem that ensures the convergence of the algorithm and its robustness
to summable errors, for each i let €15 ; be the error at iteration k& when computing Jx 4,, and

let 51 be the error at iteration k& when computing B. An inexact GFB algorithm génerates
sequences (2 k) ey ¢ € [1,7], and (z)cn, such that for all i € [1,n] and k € N,

(2.2) Ziger1 = Zigo + M (S 4, (2205 — 20 — W (Bg +€24) ) + 1k, — Tk -

Theorem 2.1. Suppose that zer (B + Y ;| A;) # 0. Suppose that the following assumptions
are satisfied:

(i) 0 <infrey Ap < suppeny Ax < min (%, % + g), and

(i) 720 llearll < +oo, and for all i, 3320 |le1n.ill < +oo.
Then the sequence (zy),cy defined in (2.2) converges weakly toward a solution of (1.1). More-
over, if Vk € N, A\, < 1, then the convergence is strong if either B is uniformly monotone,
or X', wi_lAZ- is uniformly monotone. The latter is true, for instance, if Vi € [1,n], A; is
uniformly monotone with its modulus ¢ being also subadditive or conver.

The definition of uniform monotonicity and the function ¢ is provided in section 4.1.

The following corollary specializes Theorem 2.1 to the case of convex optimization prob-
lems of the form (1.2).

Corollary 2.2. Suppose that V f is Lipschitz continuous with constant 1/ and that (H1)—
(H2) are verified. In Algorithm 1 and in (2.2), substitute B with Vf and A; with Og;
(i.e., Sy, with proxa, ). Then, under assumptions (1)-(ii) of Theorem 2.1, the sequence

(7h) ey cOnverges wea;{:ly towards a minimizer of (1.2). Moreover, if Vk € N, \p < 1, then
(k) ey converges strongly to the unique minimizer of (1.2) if either f is uniformly conver,
or X?Zl w;lﬁgi is uniformly monotone. The latter is true, for instance, if Vi € [1,n], g; is
uniformly convex with its modulus ¢ being also subadditive or convex.

The proofs are detailed in section 4.

Remark 2.1. Recall that a function f € I'o(H) is uniformly convex of modulus ¢ : [0, +o0[—
[0, +00] if ¢ is a nondecreasing function that vanishes only at 0, such that for all z and y in
dom f, the following holds:

Vpelo, 1], flpz+ (1-p)y)+p(l—p)e(lz—yl) <pf(z)+ (1 —p)f(y) .

The formulation of Algorithm 1 is general, but it can be simplified for practical purposes.
In particular, the auxiliary variables z; can all be initialized to 0, the weights w; can be set
equally to 1/n, and for simplicity the relaxation parameters \; can be set to 1, constant along
iterations. This is what has been done in the numerical experiments described in section 3.

2.2. Special instances. Our GFB algorithm can be viewed as a hybrid splitting algo-
rithm whose special instances turn out to be classical splitting methods, namely, the forward-
backward and DR algorithms.

Relaxed forward-backward. For n = 1, the core update operator (2.1) of Algorithm 1 spe-
cializes to

x4+ A (Jya(x —yBx) —x) ,

so that xy given by (2.2) follows the iterations of the relaxed forward-backward algorithm
[20, section 6]. In this case, convergence can be ensured with step-size v varying along iter-
ations; see the discussion in Remark 4.3. For convex minimization problems, known results
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on convergence rate analysis (on the objective in general) and accelerated versions of the
forward-backward algorithm [8, 9, 61] might inspire one to study those of our GFB (for the
case where 5 > 0).
Relaxed Douglas—Rachford. If we set B = 0, the update of the auxiliary variables in (2.1)
becomes
Zi < % +)\k(J%Ai(2a; — zi) — x) ,

so that (z; ), given by (2.2) follows the iterations of the relaxed DR algorithm on the product
space H" for solving 0 € >, A;x [24, 71]. The convergence statements of Theorem 4.17(a)—
(c) hold by replacing the conditions on the relaxation parameters by Vk € N, A\p € ]0,2]
and Y, oy Ae(2 — ;) = +o00; this extends Remark 4.1 to o = 3 by Proposition 4.12 (see
section 4.5).

Resolvents of the sum of monotone operators. Our GFB scheme provides yet another way
to compute the resolvent of the sum of maximal monotone operators (4;),. Given a point
y €ran (Id+)", A;), setin (1.1) B : z — 2 —y and § = 1. It would be interesting to compare
this algorithm with the DR and Dykstra-based variants [21]. This is left to a future work.

2.3. Relation to other works.

Relation to [59]. The authors in [59, section 5.3, problem (51)] describe an instance of the
“block-decomposition” hybrid proximal extragradient (HPE) for minimizing F' = f + g under
linear constraints. Equation (1.2) can be cast in an equivalent linearly constrained convex
programming,

2.3 i ;Wi Zg i\ %4 h that P :O,
(23 i | () 4 3 ai) sueh that P (2

where Pg. is the orthogonal projector on S~ {2z =(2);, € H" | S, wizi = 0}. As Pg. is
self-adjoint, z is an optimal solution if and only if there exists v = (v;), € H" such that

0 € (Vf(Z,w)z) ), + (8gi(zi) /wi); + Pgi(v) and Pgi(z) =0,

and the minimizer of F' is given by z = >, w;z;.

Let ¢ € 10,1] and v = ¢— 28

e Transposed to our setting, their iterations are
S

presented in Algorithm 2.

Algorithm 2. Tterations of block-decomposition HPE [59].

repeat
for i € [1,n] do
| 2 prox g o (4% + (1= %)z — 7V F(2) + 7 (v — w));

for i € [1,n] do
L vi < v — 9z + 92
Ty Wiz
U Y Wi
until convergence;




1206 HUGO RAGUET, JALAL FADILI, AND GABRIEL PEYRE

The update of the z;’s in this iteration bears similarities with the one in Algorithm 1, where
the ~’s play analogous roles. Nonetheless, the two algorithms are different. For instance, our
algorithm solves the primal problem, while Algorithm 2 solves both the primal and dual
problems. In addition, the objective in [59] is to study complexity, hence the different set of
assumptions.

In preparing a revised draft of this paper, it came to our attention that another adaptation
of the block-decomposition HPE, exploiting the specific properties of the linear constraints
Pg1(z) = 0 and changing the metric, leads to the iterations (2.2) with Vk € N, A\, = 1,
i.e., no under- or overrelaxation. This could be another framework for studying convergence
properties of GFB.

Relation to [26]. Combettes and Pesquet independently developed another algorithm for
solving a general class of problems that covers (1.1). They rely on the classical Kuhn—Tucker
theory and propose a primal-dual splitting algorithm for solving monotone inclusions involving
a mixture of sums, linear compositions, and parallel sums (inf-convolution in convex optimiza-
tion) of set-valued and Lipschitz operators. More precisely, the authors exploit the fact that
the primal and dual problems have a similar structure and cast the problem as finding a
zero of the sum of a Lipschitz-continuous monotone map with a maximal monotone operator
whose resolvent is easily computable. They solve the corresponding monotone inclusion using
an inexact version of Tseng’s forward-backward-forward splitting algorithm [75].

Removing the parallel sum, taking the linear operators as the identity in [26, prob-
lem (1.1)], and assuming that the Lipschitz part is also cocoercive, one recovers problem (1.1).
For the sake of simplicity and space saving we do not fully reproduce Combettes and Pesquet’s
algorithm. However, adapted to the optimization problem mingey f(x) + ), gi(Liz), where
each L; is a bounded linear operator, their scheme is presented in Algorithm 3 (g;* is the
Legendre—Fenchel conjugate of g;).

Algorithm 3. Iterations of primal-dual algorithm of [26].

Choose a sequence (Vx)cn in [€, (1 —€)/¢], where ¢ Ll Vi ILil|? and € € ]0,1/(1+¢)|[.
k < 0.
repeat
y <z — (V@) + 20 L (v))
for i € [1,n] do
zi < v + WLi (2);
Vi <= U — 2 + Prox,, g« (2:) + e Li (y);
w4 x— (VS (y) + 200 Lif (prox,, g« (2i)));
k< k+1
until convergence;

Recall that the proximity operator of ¢ can be easily deduced from that of g; using
Moreau’s identity. Taking L; = Id in Algorithm 3 solves (1.2). While we solve the primal
problem, their algorithm solves both the primal and dual problems. Note, however, that it
requires two calls to the gradient of f per iteration.
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3. Numerical experiments. This section exemplifies the applicability of our GFB split-
ting algorithm on image processing problems by solving some regularized inverse problems.
The problems are selected so that other splitting algorithms can be applied as well and com-
pared fairly. The parameters involved were manually selected for each compared algorithm
to achieve its best performance, for instance, in terms of energy decay. In the following, 1d
denotes the identity operator on the appropriate space to be understood from the context, N
is a positive integer, and Z = RV XV is the set of images of size N x N pixels.

3.1. Variational image restoration. We consider a class of inverse problem regulariza-
tions, where one wants to recover an (unknown) high resolution image yg € Z from noisy low
resolution observations y = ®yo + w € Z. We report results using several ill-posed linear
operators ® : T — 7, and focus our attention on convolution and a masking operator and a
combination of these operators. In the numerical experiments, the noise vector w € Z is a
realization of an additive white Gaussian noise of variance o2,.

The restored image yo = WZx is obtained by optimizing the coefficients T € H in a
redundant wavelet frame [56], where W : H — Z is the wavelet synthesis operator. The
wavelet atoms are normalized so that W is a Parseval tight frame, i.e., it satisfies WW* = Id.
In this setting, the coefficients are vectors © € H = 77, where the redundancy J = 3Jy + 1
depends on the number of resolution levels Jy of the wavelet transform.

The general variational problem for the recovery reads as

3.1) min{F(z) = slly — @Wa|® + pllz|IT, + vIIWelrv} -

The first term in the summand is the data fidelity term, which is taken to be a squared
fo-norm to reflect the additive white Gaussianity of the noise. The second and third terms
are reqularizations, enforcing priors assumed to be satisfied by the original image. The first
regularization is a f1/fo-norm by blocks, inducing structured sparsity on the solution. The
second regularization is a discrete total variation seminorm, inducing sparsity on the gradient
of the restored image. The scalars p and v are weights—so-called regularization parameters—
to balance between each terms of the energy F. We now detail the properties of each of these
three terms.

3.1.1. Data fidelity %Hy — ®Wz||%2. For the inpainting inverse problem, one considers
a masking operator

« 0 ifpeQ,
(My)pdzf{

yp otherwise ,

where () is a set of pixels, taking into account missing or defective sensors; we will denote
p = |Q|/N? the ratio of missing pixels. For the deblurring inverse problem, we consider a
convolution with a discrete Gaussian filter of width ok, K : y — Gy, * y, normalized to a
unit mass. In the following, ® will be either M, K, or the composition of both, M K.

Denoting L = ®W, the fidelity term thus reads as f(z) = 3|ly — Lz||?>. The function
f corresponds to the smooth term in (1.2). Its gradient Vf : z +— L* (Lx — y) is Lipschitz
continuous with constant =1 < ||®W|]2 = 1.

For any v > 0, the proximity operator of f reads as

(3.2) prox, (z) = (Id DL (2 + 4 L*y) .
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The vector L*y can be precomputed, but inverting Id +vL* L may be in general computation-
ally demanding. For inpainting or deblurring alone, as W is associated to a Parseval tight
frame, the Sherman—Morrison—Woodbury formula gives

(Id+~yL*L)* =1d —L*(Id+yLL*) 'L
(3.3) =T1d —W*&* (Id 40 T*) ' oW .

Since M (resp., K) is a diagonal operator in the pixel domain (resp., Fourier domain), (3.3)
can be computed in O(N?) (resp., O(N?log N)) operations. However, the composite case
L = MKW is more involved. A possible workaround is to introduce an auxiliary variable,
replacing f : H — R by f : H x T —]—00, +00] defined by

(3'4) f(x7u) = %Hy - MU’H2 + Loxw (x7u) = gl(u) + 92(x7u) 5

where Cxw & {(#,u) € H x T |u= KWz} and 1o is the indicator function of the closed
convex set C; ie., tc(v) = 0if v € C, and +oco otherwise. Only then, prox,, can be

computed from (3.2), and prox. ., is the orthogonal projection on ker([Id, —KW]) [12, 33],
which involves an inversion similar to that in (3.3).

3.1.2. Regularization ,u||x||f,2. Sparsity-promoting regularizations with a synthesis-type
prior over wavelet (or other transformed) coefficients are popular for solving a wide range of
inverse problems [56]. Figure 1(a) shows an example of orthogonal wavelet coefficients of a
natural image where most of the coefficients have small amplitude. A way to enforce this
“sparsity” is to include in (3.1) the ¢1-norm of the coefficients [z[|1 = 3_, |zp|.

The presence of edges or textures creates structured local dependencies in the wavelet
coefficients of natural images. A way to take into account those dependencies is to replace
the absolute value of the coefficients in the ¢1-norm by the fs-norm of groups (or blocks) of
coefficients [64, 77, 50, 15, 39]. This is known as the mixed ¢; /¢3-norm, defined here as

(3.5) ey =3 nllewl = S S a2,
beB beB pEDb

where p indexes the coefficients, the blocks b are sets of indices, the block-structure B is a
collection of blocks, and zp, & (a;p)peb is a subvector of z indexed by b. The positive scalars
up are weights tuning the influence of each block. Equation (3.5) defines a norm on H as soon
as B covers the whole space; i.e., Vp € [1,N]? x [1,J],3b € B:p € b and up, > 0. Note
that for B =, {p} and gy =1 for all p, ||:E||lf2 reduces to the ¢1-norm.

We mentioned in the introduction that the proximal operator of the ¢1-norm is the coeffi-
cientwise soft-thresholding. Similarly, it is easy to show that whenever B is a disjoint partition
where the blocks are nonoverlapping, i.e., Vb,b’ € B, bNb’ = (), the proximity operator of
Il - H{S 5 is the blockwise soft-thresholding

prox, 15, (b)) = (Opp-n(Tn))y, »

with

0 if |xp]] < 7,
(1 1 . ‘) T, otherwise |
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B B
(@) [zl = 22, s () [2lfe = Xpes lznll () ll2lfz = 2]y + 27

Figure 1. [llustration of the block €1 /l2-norm. (a) sparsity of the image in an orthogonal wavelet decompo-
sition (gray pizels corresponds to low coefficients); (b) a nonoverlapping block structure; (c) splitting of a more
complex overlapping block structure into two nonoverlapping layers.

and the coefficients x;, not covered by B are left unaltered.

Nonoverlapping block structures break the translation invariance that is underlying most
traditional image models. To restore this invariance, one can consider overlapping blocks,
as illustrated in Figure 1(c). Computing prox s, in this case is not as simple as for the
nonoverlapping case, because the blocks cannot be treated independently. For tree-structured
blocks (i.e., bNb’ # 0 = b C b’ or b’ C b), [48] proposes a method involving the computation
of a min-cost flow. This could be computationally expensive and does not address the general
case anyway. Instead, it is always possible to decompose the block structure as a finite union
of nonoverlapping substructures B = |J, B;. The resulting term can finally be split into
By = Yhen ol = X Ches, llznll = 3, 2l|Ty, where each | - || is simple.

In our numerical experiments where % = Z”, coefficients within each resolution level (from
1 to Jp) and each subband are grouped according to all possible square spatial blocks of size
S x S, which can be decomposed into S? nonoverlapping block structures.

2

3.1.3. Regularization v||Wz||rv. The second regularization favors piecewise-smooth im-
ages, by inducing sparsity on its gradient [69]. The TV seminorm can be viewed as a specific
instance of the ¢ /¢s-norm, ||y||Tv = | grad yH%V, with

I — 72, Bryv [ 5. 2
grad'{ y —> (V*y,H*y) and H('U,h) H1,2 - Z Up +hp ’

p€e[1,N]?

where the image gradient is computed by finite differences through convolution with a vertical
filter V and a horizontal filter H, and Brv is clearly nonoverlapping. For some special gradient
filters, the modified TV seminorm can be split into simple functions; see, for instance, [24, 67].
However, we consider more conventional filters

-1 0 -1 1
V_(l 0) and H—(O 0)

centered in the upper-left corner. Introducing an auxiliary variable as advocated in (3.4), the
main difficulty remains to invert the operator (Id 4+ grad ograd®), where grad® is the adjoint
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of the gradient (i.e., the opposite of the divergence operator). Under appropriate boundary
conditions, this can be done in the Fourier domain in O(N?log(N)) operations.

3.2. Resolution with splitting methods.

3.2.1. Tested algorithms. We now give the details of the different splitting strategies
required to apply the three tested algorithms to (3.1).
Generalized forward-backward (GFB). The problem is rewritten under the form (1.2) as

S2
: B; B
(36) minglly = MEW| + ) _ll#I0s + vIulTE + 0o (#,4)
u€Z? i=1

with f(z) = 3|ly — MKWz|? and n = S? + 2. The indicator function LCOyadow 18 defined
similarly as in (3.4). In Algorithm 1, we set equal weights w; = 1/n, a constant gradient
step-size v = 1.8, and a constant relaxation parameter A = 1.

Relaxed Douglas—Rachford (DR ). Here the problem is split as

S2
: B; B
2%171-[1 %Hy - MU1H2 + LCKW (I’,Ul) + /’LZ HxHLQ + VHU2H13V + LCgradoW(‘T7u2)
u1 €L i=1

u €72

and solved with Algorithm 1, where f =0 and n = S + 4. As mentioned in section 2.2, this
corresponds to a relaxed version of the DR algorithm. In our experiments, the best results
were obtained for v = 1/n.

Primal-dual Chambolle-Pock (CHPO). A way to avoid operator inversions is to rewrite the
original problem as

in g(A
min g(Az) ,
where ,
A H — T x (H)Y x 12,
' r — (MKWx,x,...,a:,gradon)
and

(w21, sws2,9) > Fly—wal?+ S el Py + vlgl T3
The operator A is a concatenation of linear operators, its adjoint is easy to compute, and g
is simple, being a separable sum of simple functions. Note that this is not the only splitting
possible. For instance, one can write the problem on a product space as min,,) ey ts((xi);) +
> 9i(Ajz;), where g; is each of the functions in g above and A; is each of the linear operators
in A.

To solve this, here we use the primal-dual relaxed Arrow—Hurwicz algorithm described in
[14]. According to the notation in that paper, we set the parameters ¢ = 1, 7 = m,
and 60 = 1.

Block-decomposition hybrid proximal extragradient (HPE). We split the problem written
in (3.6) according to (2.3) and set equal weights w; = 1/n. According to section 2.3, we set
the parameter ¢ = 0.9.

g'{ ITx(H) x> — RT,
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Primal-dual Combettes—Pesquet (COPE). Finally, the problem takes its simplest form

52
. f B
(37) minglly — MEW|* + Y la|? + vllgrad oW s[5 .
i=1

As long as v = 0 (no TV-regularization), this is exactly (3.6); we apply Algorithm 3 where
L; = Id for all ¢ and v = 0.9/(1 + S). However, with TV-regularization, we avoid the
introduction of the auxiliary variable v with Lg2,; = grad oW and v = 0.9/(1 + v'S? + 8).

3.2.2. Results. All experiments were performed on discrete images of width N = 256,
with values in the range [0,1]. The additive white Gaussian noise has standard deviation
0w = 2.5 -1072. The reconstruction operator W uses separable bidimensional Daubechies
wavelets with two vanishing moments. It is implemented such that each atom has norm 277,
with j € [1, Jo] and where Jj is the coarsest resolution level. Accordingly, we set the weights
U in the £1/f2-norm to 277 at the resolution level j of the coefficients in block b. We use
Jo = 4, resulting in a dictionary with redundancy J = 3Jy + 1 = 13. All algorithms are
implemented in MATLAB.!

Results are presented in Figures 2-5. Only one image is shown here, but we obtained very
similar results on other natural images (see http://www.ceremade.dauphine.fr/~raguet/gfb/).
For each problem, the five algorithms were run 1000 iterations (initialized at zero), while we
monitored their objective functional values F' along iterations. F,i, is fixed as the minimum
value reached over the five algorithms (in our experiments, this was always that of GFB), and
evolution of the objectives compared to Fpi, is displayed for the first 100 iterations. Because
the computational complexity of an iteration may vary between algorithms, computation
times for 100 iterations (no parallel implementation) are given beside the curves. Below the
objective decay graph, one can find from left to right the original image, the degraded image,
and the restored image after 100 iterations of GFB. Degraded and restored images quality
are given in terms of signal-to-noise ratio (SNR).

Comparison to algorithms that do not use the (gradient) explicit step (CuPo, DR). For
the first three experiments, there is no TV regularization. In the deblurring task (Figure 2),
blocks of size 2 x 2 are used. GFB is slightly faster than the others, while the iteration
cost of CHPO is much higher for this problem. When increasing the block size (inpainting,
Figure 3, size 4 x 4) computation times tend to be similar, but the decay of the objective
provided by GFB is clearly faster than that of other algorithms. The advantage of using the
gradient information becomes even more salient in the composite case (i.e., ® = MK): in
Figure 4, DR performs hardly better than CHPO. Indeed, in contrast to the previous cases
(see section 3.1.1), f is not simple any longer, and the introduction of the auxiliary variable
decreases the efficiency of each iteration of DR. This phenomenon is further illustrated in the
last case, where the TV is added, introducing another auxiliary variable.

Comparison to algorithms that use the (gradient) explicit step (HPE, COPE). In the first
experiment where n is small, the iterations of the suggested block-decomposition HPE and
COPE are almost as efficient as those of GFB but take more time to compute, especially for

'The codes for reproducing the experiments, as well as results on other images, are available at http://
www.ceremade.dauphine.fr/~raguet/gfb/.


http://www.ceremade.dauphine.fr/~raguet/gfb/
http://www.ceremade.dauphine.fr/~raguet/gfb/
http://www.ceremade.dauphine.fr/~raguet/gfb/
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(a) log(F — Fmin) vs. iteration # (b) computing time
— ChPo tcupo = 153 s

3 EEE ) tDR =95s
— = =CoPe tHPE =148 s
. tCOPE =235 s

tGFB =73s

Lilabaiin Sl

(c) LaBoute yo (d) y = Kyo + w, 19.63 dB (e) Yo =Wz, 22.45 dB

Figure 2. Deblurring: o =2; p=1.3-1073; § =2; v =0.

CoOPE, which needs two calls to Vf. Recall, however, that HPE and COPE solve both the
primal and dual problems. In the second setting, HPE and COPE are hardly better than DR.
They perform better in the composite setting (i.e., ® = M K') but require more computational
time than GFB. In the last setting, iterations of COPE are still not as efficient as those of
GFB, despite the higher computational load due to the composition by the linear operator
grad oW.

Finally, let us note that in the composite case, the SNR of the restored image is greater
when using both regularizations rather than one or the other separately. Moreover, we ob-
served that mixed regularizations yield restorations more robust to variations of the parame-
ters u and v. These arguments seem to be in favor of mixed regularizations.

4. Convergence proofs. This section is dedicated to the proof of convergence of the GFB.
We first recall some essential definitions and properties of monotone operator theory that are
necessary to our exposition. The interested reader may refer to [6, 65] for a comprehensive
treatment. As we will deal with maximal monotone operator splitting, we then introduce
specific notation on the product space H". Finally, the proof itself is detailed in two steps.
First, we derive an equivalent fixed point equation satisfied by any solution of (1.1). From this,
we draw an algorithmic scheme (equivalent to GFB) and establish its convergence properties
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(a) log(F — Fmin) vs. iteration # (b) computing time
T ChPoll towpo =229s
DR

HPE tDR =219 s

- = =CoPel tHPE =352s

GFB M tCOPE =340 s

] tGFB =203 s
1l
0.5

e

(¢) LaBoute yo (d) y=Myo +w, 1.54 dB (e) yo = Wz, 21.66 dB

Figure 3. Inpainting: p=0.7; n=2.6-10"%; S =4; v =0.

and its robustness to summable errors.

4.1. Definitions and properties. In the following, A : H — 27 is a set-valued operator,
and T : domT = H — H is a full-domain (see below), single-valued operator. Id denotes the
identity operator on H.

Definition 4.1 (graph, inverse, domain, range, and zeros). The graph of A is the set gra A £

{(az,y) € H? ‘ y € Ax}. The inverse of A is the operator whose graph is gra A™ o {(x,y) €
H? | (y,x) € graA}. The domain of A is dom A E {zeH | Az #0}. The range of A is
ran A< {y e H |z e H:ye Az}, and its zeros set is zer A= {x € H |0 e Az} = A1(0).

Definition 4.2 (resolvent and reflection operators). The resolvent of A is the operator Jy =
(Id —l—A)_l. The reflection operator associated to J4 is the operator R o, —1d.

Definition 4.3 (maximal monotone operator). A is monotone if

Ve,yeH, (ue€ Az andv e Ay) = (u—v|z—y)>0.

It is, moreover, mazrimal monotone if its graph is not strictly contained in the graph of any
other monotone operator.
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(a) log(F — Fmin) vs. iteration # (b) computing time

—SEPO_ tonpo = 313's

tDR = 256 s
—— 225e= tupe =342 s
tcore = 268 s
tGFB =233 s

T

(c) LaBoute yo (d) y= MKyo +w, 3.93 dB (e) Yo = W=z, 20.77 dB

Figure 4. Composite: 0 =2; p=0.4; p=1.0-10"3; S =4; v =0.

Definition 4.4 (uniformly monotone operator). A is uniformly monotone of modulus ¢ : [0,
+oo[ = [0, 4+00] if ¢ is a nondecreasing function that vanishes only at 0 such that

Ve,yeH, (we€Ax andv € Ay)= (u—v|z—y) > p(lz—1yl) .
Definition 4.5 (nonexpansive and «-averaged operators). T' is nonexpansive if
Ve,yeH, Tz =Tyl <[z—yl .

For o € 10,1[, T is a-averaged if there exists R nonexpansive such that T = (1 — ) Id+aR.
We denote by A(a) the class of a-averaged operators on H. In particular, A (%) is the class
of firmly nonexpansive operators.
Definition 4.6 (cocoercive operator). For €10, 400, T is 3-cocoercive if BT € A (%)
The following lemma gives some useful characterizations of firmly nonexpansive operators.
Lemma 4.7. The following statements are equivalent:
(i) T is firmly nonexpansive;
(ii) 27" — Id is nonexpansive;
(iii) Va,y € M, [Tz — Ty|* < (Tx — Ty |z —y);
(iv) T is the resolvent of a maximal monotone operator A, i.e., T = J4.
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(a) log(F — Fmin) vs. iteration #

B YA g
(c) LaBoute yo (d) y= MKyo +w, 3.93 dB

(b) computing time

lonpo = 398 S
tDR =294 s
tHPE =409 s
tcops = 441's
tGFB = 286 s

(e) Jo = W, 22.48 dB

Figure 5. Composite: 0 =2; p=0.4; p=5.0-10"%; S =4; v =5.0-1073,

Proof. (i) « (ii). T € A (%) & T = 4+ for some R nonexpansive.

(i) < (iii). For the proof, see [78].
(i) & (iv). For the proof, see [58]. [ |

Note that with (iii), one retrieves the characterization of the cocoercivity given in sec-
tion 2.1. It follows by the Cauchy—Schwarz inequality that S-cocoercivity implies 1//3-Lipschitz
continuity, but the converse is not true in general. It turns out, however, to be the case for
gradients of convex functionals. We summarize here some properties of the subdifferential.

Lemma 4.8. Let f : H — R be a convex differentiable function, with 1/3-Lipschitz—

continuous gradient, B €10,+o0[, and let g € To(H). Then,
(i) BVfe A (%), i.e., is firmly nonexpansive;
(ii) Og is maximal monotone;

(iii) the resolvent of Qg is the proximity operator of g, i.e.

Proof. (i) This is the Baillon-Haddad theorem [5].
(ii) For the proof, see [68].
(iii) For the proof, see [60]. [ ]

, prox, = Jag.
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4.2. Product space. Let (w;);cp; ) € 10,1]" such that 321" w; = 1. We consider H dof
H"™ endowed with the scalar product (-|-), defined as

Vo= (w),y= () €M, (xly) =Y wilwily)
i=1

and with the corresponding norm || - ||. & C # denotes the nonempty closed convex set
defined by 8 = {x = (z;); € H | &1 = 29 = --- = x,,}, whose orthogonal complement is the
closed linear subspace S*. We denote by Id the identity operator on H, and we define the
canonical isometry

C:H—>S8z—(x,...,2).

s :H —]—o0,+o0o] and Ns : ‘H — 2% are, respectively, the indicator function and the
normal cone of 8, that is

der ] 0 ifreS, w |8t ifzxesS,
ts(x) = and Ng(x) =
s(@) {+oo otherwise s(x) {@ otherwise .

Since 8 is nonempty closed and convex, it is straightforward to see that Ng is maximal
monotone.

We also introduce the following concatenated operators. Fix B and the A;’s in problem
(L.1). Given v = (Vi);eqrn € 10, +00[", we define

YA H — 2" = (xi); = X vidi(z;) ;

i=1

i.e., its graph is

n
graved = X grav; A;

i=1

= {(az,y) € H? ‘ x=(x;);,y=(vi);, and Vi, y; € ’yiAixi} ,

and B: H — H,x = (z;), — (Bx;);. Using the maximal monotonicity of the A;’s and the
(B-cocoercivity of B, it is an easy exercise to establish that A is maximal monotone and B
is f-cocoercive on H.

4.3. Fixed point equation. Now that we have all necessary material, let us characterize
solutions of (1.1).

Proposition 4.9. Let (w;);cpy y € 10,1]". For any v > 0, x € H is a solution of (1.1) if
and only if there exists (2);ep ) € H" such that

(41) { Vi, z; = R%Ai@x — z; —yBzx) —yBx

rT=) Wiz .



A GENERALIZED FORWARD-BACKWARD SPLITTING 1217

Proof. Setting v > 0, we have the equivalence

0e Bx—i—ZAix &3 (), e H": { ZZL%(Z}_ZZZ —yBz) € yAx

Now,

wi (x — z; —yBz) € yAjx & (22 — z; —yBx) —x € lAi:E
i

(by Lemma 4.7(iv)) < & = Jx4,(27 — 2z; — vBw)
&2 — (20 — z;) = 2J2 4, (27 — 2z; — yBw)

— (2¢ — z; — yBx) — yBx
& 2p= Ry, (20 — 2z —yBx) —yBx . [ |
From now on, to lighten the notation, we denote Pg o Jng and Rs © Rpyg. Before
formulating our fixed point equation, we need the following preparatory lemma.
Lemma 4.10. For all z = (%); € H, b= (b), € S, and v = (i), € |0, +o0[",
(i) Ps is the orthogonal projector on S, and Psz = C (>, w;z;);
(ii) Rg (z - b) = Rgz - b,‘
(iii) R’YwAz = (RYzAl(ZZ))Z
Proof. (i) From Lemma 4.8(iii), we have for z € H

. ef .
Ps(z) = argminges ||z — yl| = projs(z) -

Now, argmingcg ||z — y||? = Cargmingcq, >, willz — y|[?), where the unique minimizer of
> willzi — y||? is the barycenter of (2;),, i.e., >, w;z;.

(ii) Pg is obviously linear, and so is Rg. Since b € S, Rgb = b, and the result follows.

(iii) This is a consequence of the separability of vA in terms of the components of z
implying that Jy.az = (J;4,2);. The result follows from the definition of Rq.a. [ ]

In what follows, we denote the set of fized points of an operator T' : H — H by fixT S
{zeH |Tz==z2}.

Proposition 4.11. (2;),ep ) € H" satisfies (4.1) if and only if z = (), is a fized point of
the following operator:

(4.2) H — H,
z —

![RyaRs +1d][1d — vBPs] (2) ,
with v = (L);.

Proof. Ijsing Lemma 4.10 in (4.1), we have C(z) = Psz, C(Bx) = BPs(z), and Rg —
vBPs = Rg[Id — yBPgs]. Altogether, this yields

z satisfles (4.1) & z = RyaRs [Id — vBPs]z — vBPsz
& 2z = RyaRs [Id — 'yBPs]z + [Id — 'yBPs]z
& z=4[RyaRs+1d|[Id—vBPs]z. N



1218 HUGO RAGUET, JALAL FADILI, AND GABRIEL PEYRE

4.4. Properties of the fixed point operator. Expression (4.2) gives us the operator on
which is based our GFB scheme. We first study the properties of this operator that will play
a crucial role in the convergence proof.

Proposition 4.12. For any v € 10, +o00[", define

H — H,

(4.3) T~ : 2 s LRuaRs+1d)z .

Then, T ~ is firmly nonexpansive; i.e., Ti 5 € A(%)
Proof. From Lemma 4.7(i)¢(ii), Ry, and Rs are nonexpansive, and so is R4 in view
of Lemma 4.10(iii). Finally, as a composition of nonexpansive operators, Ry.aRs is also

nonexpansive, and the proof is complete by definition of A(%) [ ]
Proposition 4.13. For any v € 10,24, define
H — H,
(44) Tv: [Id — yBPs| z .

Then, Ty € A(55)-
Proof. By hypothesis, 8B € A(%), and so is fB. Then, from Lemma 4.7(iii), we have for
any ¢,y € H

|6BPsz — BBPsy|* < (3BPsx — BBPsy| Psx — Psy)
= (fPsBPsx — fPsBPsy|x —y)
(4.5) = (BPsx — fBPsy|x —vy) ,

where we derive the first equality from the fact that Ps is self-adjoint (Lemma 4.10(i)), and
the second equality using that for all * € H, BPsx € S. From Lemma 4.7(iii)< (i), we
establish that SBPs € A( %) We conclude the proof using [20, Lemma 2.3]. [ |

Proposition 4.14. For all v € ]0,+o0[" and v € ]0,23], we have that T T, € A(a), with
o —max (2, &7

Proof. As Ty~ and T , are a-averaged operators by Propositions 4.12 and 4.13, it follows
from [20, Lemma 2.2(iii)] that their composition is also a-averaged with the given value
of a. |

The following proposition defines a maximal monotone operator Afy which will be useful
for characterizing the operator 17 .

Proposition 4.15. For all v € ]0,400[" there exists a mazimal monotone operator A, such
that Ty » = JAL,- Moreover, for all v > 0,

(4.6) y=T,Tr,ze z—y—1BPszec Aly .

In particular,
fix Ty 4T5 = zer (Aﬁy + ")/Bps) .

Proof. The existence of Af7 is ensured by Proposition 4.12 and Lemma 4.7(iv). Then for
z€EH,

y=T,Toyz < y=(Id+ Afy)_1 (Id — vBPs)z
<:>z—'yBP5z—y€A'7y.
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Taking y = z proves the second statement. |
Now, let us examine the properties of A’w.

Proposition 4.16. For all v € 10, +o0[" and (u,y) € H?,
(4.7) ucAly & u® —ytc~A (ys — ul) :
def

where we denote for any v € H, v5 < Ps (v) and v+ = Pg.1 (v).
Proof. First, by definition of T , we have

T~ = 3 [(2Jyea — Id) (2Ps — Id) + Id]
= 1 [2)yea(Ps — Ps1) — (Ps — Ps1) + Ps + Pg1]
(4'8) :JqA(PS—PSJ_)—I-PSJ_ .

Therefore,

ucAlyeT(uty) =y
(by (4.8)) & Jaea ((quy)S—(quy)l) =y—(uty) =y° —ut
©(U+y)5—(U+y)L—ys+uLGW-A(yS—uL)

<:>u‘g—yJ‘€'y.A<yS—uJ‘>. |

4.5. Convergence. We are now ready to state the main convergence result of our relaxed
and inexact GFB splitting algorithm (2.2) to solve (1.1).
Theorem 4.17. Let v € ]0,28(, and set v = ()i € ]0,+00[", let (Ag)pen be a sequence in

]O,min (%, % + g) [, set zg € H, and for every k € N, set

(4.9) Zit1 = 25 + M (Tiny (To g2k + €20) + €10 — 2k)

where Ty ~ (resp., T, ) is defined in (4.3) (resp., in (4.4)), and €1 ,e2 € H. If
(i) 7er (B -+, A7) # 0
(ii) 0< infkeN A < SUPeN A < min (%, % + g),
(iii) 30455 llenkll < +oo and (2 llezll < 400
are satisfied, then
(a) (TlﬁTgﬁzk — zk)keN converges strongly to 0;
(b) (zk)pen converges weakly to a point z € fix Ty 4T +;
(c) (xk ot > wizi,k)keN converges weakly to x ot >, wiz; € zer (B +>, Ai).
(d) Moreover, if Vk € N, \p < 1, (x1),cy converges strongly in each of the following
cases:
(1) B is uniformly monotone.
(2) X, wi_lAZ- is uniformly monotone. For instance, this is true if Vi € [1,n], A;
is uniformly monotone with the same modulus ¢ being also subadditive or convex.
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Proof. (a) Denoting T' = T ,T> -, we have, for all k € N,
(4.10) Zpt1 = 2k + Ak (Tzk + €& — Zk) ,

with g, o T 4 (Tgﬁzk —{—527]@) —-T, (Tgﬁzk) +€1 . Proposition 4.12 shows that T7 5 € A (%)

is in particular nonexpansive, so that ||leg|| < |lea x|l + ||e1,x||, and we deduce from (iii) that

S llekll < +oc. Moreover, by Proposition 4.14, T € A(a) with a = max (2, ﬁ) In

particular, T is nonexpansive, and thus fix T is closed and convex. Now, for k € N, setting
def

T, = Id + A\, (T — Id), the iterations (4.10) can be rewritten as
(4.11) Zk4+1 = Tz + ALEL .

Since (i) provides for all k € N, oy & Ay < 1, [20, Lemma 2.2(i)] shows that T}, € A(ay), and
(4.11) is thus a particular instance of [20, Algorithm 4.1]. Also, it is clear that for all k£ € N,
fixT}, = fixT. Thus with Propositions 4.9 and 4.11, (i) provides oy fixT} = fixT # 0.
According to (ii), infgey Ay > 0 and suppey o < 1, so we deduce from [20, Theorem 3.1 and
Remark 3.4] that

2
(4.12) 3 HTkzk - zkH < 400
keN

and that (z3),cy is quasi-Fejér monotone with respect to fixT. By definition of Ty, (4.12)
gives > e M2 || Tz — 2> < 400, which in turn implies Tz, — 2z, — 0 since infyey A > 0.

(b) T being nonexpansive, it follows from the semiclosed principle [13], [6, Corollary 4.18]
that any weak cluster point of (zj),cy belongs to fixT, so that [6, Theorem 5.5] provides
weak convergence toward z € fixT'.

(c) Foranyy € H, (y|xp — ) = (Y| 22 wizip — 21)) = 32 wi (y | zip — zi) = (C(y) | zx — 2).
So, (b) provides weak convergence of (), toward x, which is a zero of B+, A; by Propo-
sition 4.9.

(d) If, moreover, Vk € N, Ay < 1, in view of Propositions 4.12 and 4.13, (4.9) is im-
mediately a particular instance of [20, Algorithm 4.1]. In particular, [20, Theorem 3.1 and
Remark 3.4] provides

(4.13) 3 H(Id ~ Ty )z — (Id — :rM)zH2 - ny2HBPszk - BPszH2 < to00 .
keEN keEN
(d)(1). Now, if B is uniformly monotone, then we have, for all £k € N,
(BPsz, — BPsz|zr — z) = Y, wi (B(X; wizix) — B( X, wizi) | zie — 2i)
= (B(X;wizig) — B(X wizi) | 2 wilzin — 2i))
> p(|lx — ) -

From (b) and (4.13), we deduce that the right-hand side of the last inequality converges to 0.
In view of the properties of ¢, we obtain strong convergence of (x);cy toward .
(d)(2). Let w = —yBPsz and Vk € N,

Yy =T14To2, and uy = (2, — yi) — 7BPsz, .
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We then have Hw ) UH . Hyk _ zkH +7HBPsZk - BPSZH '

It then follows from (a) and (4.13) that uy converges strongly to u. On the other hand, by
Proposition 4.15, we have

u € Afyz and wui € Afyyk .

Therefore, applying Proposition 4.16 to the pairs (z,u) and (yx, ux), and using the fact that
X', w; ' A; is uniformly monotone, we obtain

(@ =) = (uf —y)| (=% —uh) = (o —ud)) = ¢ (||=° —uh) - @F — i)

for some nondecreasing function ¢ : [0, +0o[— [0, +oc] that vanishes only at 0. Now,

(WS =25 = @Wf —yt) | (2° = wh) - (uf —u)
= (W —uf) — (= — ) | (=5~ yf) - (wh — )

:<u5—uf|z5—y,‘§>+<zJ‘—y,ﬂ“uJ‘—u,ﬂ‘>: (u—up|z—yi) .
Moreover,

o (|| = uh) = @ —uh)|)) =0 (|| =5 - v8) - (wt - ud)]|)

o (V=] e )

20 (|~

since ¢ o /- : [0, +00[— [0, +00] is nondecreasing. Altogether, we arrive at

90<st_yksH) <(u—up|z—yi) .

By (a) and (b), yi converges weakly to z, and we have shown that uj converges strongly to
u. This proves that (u — uy | 2z — yi) — 0, and therefore yk‘S converges strongly to z° = x in
view of the properties of ¢. The latter in conjunction with (a) implies that zlf = I}, converges
strongly to x.

It remains to show the special cases implying uniform monotonicity in (d)(2). Indeed, if
Vi € [1,n], A; is uniformly monotone with the same modulus ¢ which is also convex, then
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for (x,u) € graveA and (y,v) € grav.A,
(u—vlz—y) = w(w—vi|z—y) > > wyp (o —vil])

(0 <infy; < o0) > infry > wiep ([l — i)
7 (2

i

(i is convex) > lnf Vi ¢ (Z wi|z; — yzH)

(¢ is nondecreasing) > inf; ¢ | infw; | E llz: — vl
i i -
7

(¢ is nondecreasing and w; € ]0,1]) > infv; ¢ | inf wi\/ E wil|z — il
i i -
3

= irilf’yi © <iri1fw,' ||z — yH) .

The proof for the case where ¢ is subadditive follows the same lines using subadditivity instead
of convexity in the inequalities, and replacing inf; v; by v (since by definition v;w; = ) and
inf; w; by 1. [ ]

Remark 4.1. For statements (a)—(c), assumption (ii) can be weakened. More precisely,
(ii) can be replaced by > ;. Ak(1 — a)) = 400, where o = max (%, ﬁ), and (iii) by
> oten Mk(llerkll 4+ lle2kl]) < +oo. The proof would follow the same lines as in [20, Lemma 5.1].

Remark 4.2 (strong convergence). We have proved strong convergence of the sequence
(k) peny but we did not elaborate on strong convergence of (). It turns out that the se-
quence (2j),cy is indeed quasi-Fejér monotone with respect to fix T'. Thus, if int (fixT') # 0,
[20, Lemma 2.8(iv)] provides strong convergence of (z),cy, and therefore of (zy),cy. An
alternative sufficient condition is that Afy is semiregular; see [4, Definition 2.3] and also [27,
Condition 3.2] in the case of convex optimization. Semiregularity occurs, for instance, if the
operator has a boundedly relatively compact domain (the intersection of its closure with any
closed ball is compact); see [4, Proposition 2.4]. However, this condition is rather abstract,
and it is not easy to translate it in terms of the properties of the individual A;’s when n > 1.

Remark 4.3 (nonstationary GFB). Convergence of the nonstationary version of our inex-
act GFB splitting algorithm, i.e., for a varying sequence (7x),cy, can also be established.
More precisely, it can be shown that the statements of Theorem 4.17 hold under the addi-
tional assumption that 0 <y <y, <7 < 28 and (9 — ¥)ey is absolutely summable where
v € [7,7]. The key idea underlying the proof consists in viewing the nonstationary method
as a perturbed version of the stationary method with an additional error term (besides those
previously considered in the implicit and explicit steps), and ensuring that this error is also
summable; see the initial work of [51, 52] in this direction. This absolute summability assump-
tion on (7 — ) ey can be dropped for n = 1, in which case we recover the forward-backward
algorithm.

Finally, let us explicit the relationship between Theorem 4.17 and the claims of section 2.1.
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Proof of Theorem 2.1. It is straightforward to see that the vector whose coordinates
are the sequences (z; ),y defined in (2.2) follows iterations (4.9), with €1, = (e1,4,); and
€9 = C (—7e2), which are, of course, summable under the required assumptions. Applying
Theorem 4.17, the claimed convergence properties follow. |

Proof of Corollary 2.2. Under (H1)—(H2), [6, Theorems 16.2 and 16.37(i)] provides that
argmin(f + >, g;) = zer (Vf +>,0g;) # 0. Furthermore, Lemma 4.8(i) provides that V f
is B-cocoercive, and Lemma 4.8(iii) shows that J £y corresponds to proxxy Hence, weak

w. 91"
convergence of (x), oy toward a minimizer of (1.2) follows from Theorem 4.17(c). The proof
of strong convergence is a consequence of Theorem 4.17(d) together with the fact that uniform
convexity of a function in I'g(H) implies uniform monotonicity of its subdifferential [6]. [ |

5. Conclusion. We have introduced in this paper a novel splitting method for finding a
zero of a sum of an arbitrary number of maximal monotone operators. It takes advantage of
either the cocoercivity or the possibility of computing the resolvent of each operator separately.
We provided theoretical guarantees on the convergence of the algorithm and its robustness to
summable errors. We emphasized the corresponding novel primal proximal splitting method
for minimizing convex functionals that are the sum of a smooth term and several simple
functions. Our method generalizes some existing schemes and enlarges the class of problems
that can be solved efficiently with proximal splitting methods. Numerical experiments on
convex optimization for inverse problems show evidence of the advantages of our approach for
large-scale imaging problems.
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